Answer:
19063.6051 g
Explanation:
Pressure = Atmospheric pressure + Gauge Pressure
Atmospheric pressure = 97 kPa
Gauge pressure = 500 kPa
Total pressure = 500 + 97 kPa = 597 kPa
Also, P (kPa) = 1/101.325 P(atm)
Pressure = 5.89193 atm
Volume = 2.5 m³ = 2500 L ( As m³ = 1000 L)
Temperature = 28 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28.2 + 273.15) K = 301.15 K
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L.atm/K.mol
Applying the equation as:
5.89193 atm × 2500 L = n × 0.0821 L.atm/K.mol × 301.15 K
⇒n = 595.76 moles
Molar mass of oxygen gas = 31.9988 g/mol
Mass = Moles * Molar mass = 595.76 * 31.9988 g = 19063.6051 g
Answer:
s= 20.4 m
Explanation:
First lets write down equations for each ball:
s=so+vo*t+1/2a_c*t^2
for ball A:
s_a=30+5*t+1/2*9.81*t^2
for ball B:
s_b=20*t-1/2*9.81*t^2
to find time deeded to pass we just put that
s_a = s_b
30+5*t-4.91*t^2=20*t-4.9*t^2
t=2 s
now we just have to put that time in any of those equations an get distance from the ground:
s = 30 + 5*2 -1/2*9.81 *2^2
s= 20.4 m
Explanation:
Conduction:
Heat transfer in the conduction occurs due to movement of molecule or we can say that due to movement of electrons in the two end of same the body. Generally, phenomenon of conduction happens in the case of solid . In conduction heat transfer takes places due to direct contact of two bodies.
Convection:
In convection heat transfer of fluid takes place due to density difference .In simple words we can say that heat transfer occur due to motion of fluid.
Answer:
power developed by the turbine = 6927.415 kW
Explanation:
given data
pressure = 4 MPa
specific enthalpy h1 = 3015.4 kJ/kg
velocity v1 = 10 m/s
pressure = 0.07 MPa
specific enthalpy h2 = 2431.7 kJ/kg
velocity v2 = 90 m/s
mass flow rate = 11.95 kg/s
solution
we apply here thermodynamic equation that
energy equation that is

put here value with
turbine is insulated so q = 0
so here

solve we get
w = 579700 J/kg = 579.7 kJ/kg
and
W = mass flow rate × w
W = 11.95 × 579.7
W = 6927.415 kW
power developed by the turbine = 6927.415 kW