Answer:
0.064 mg/kg/day
6.25% from water, 93.75% from fish
Explanation:
Density of water is 1 kg/L, so the concentration of the chemical in the water is 0.1 mg/kg.
The BCF = 10³, so the concentration of the chemical in the fish is:
10³ = x / (0.1 mg/kg)
x = 100 mg/kg
For 2 L of water and 30 g of fish:
2 kg × 0.1 mg/kg = 0.2 mg
0.030 kg × 100 mg/kg = 3 mg
The total daily intake is 3.2 mg. Divided by the woman's mass of 50 kg, the dosage is:
(3.2 mg/day) / (50 kg) = 0.064 mg/kg/day
b) The percent from the water is:
0.2 mg / 3.2 mg = 6.25%
And the percent from the fish is:
3 mg / 3.2 mg = 93.75%
3-SAT ≤p TSP
If P ¹ NP, then no NP-complete problem can be solved in polynomial time.
both the statements are true.
<u>Explanation:</u>
- 3-SAT ≤p TSP due to any complete problem of NP to other problem by exits of reductions.
- If P ¹ NP, then 3-SAT ≤p 2-SAT are the polynomial time algorithm are not for 3-SAT. In P, 2-SAT is found, 3- SAT polynomial time algorithm implies the exit of reductions. 3 SAT does not have polynomial time algorithm when P≠NP.
- If P ¹ NP, then no NP-complete problem can be solved in polynomial time. because for the NP complete problem individually gets the polynomial time algorithm for the others. It may be in P for all the problems, the implication of latter is P≠NP.
S= d/t
Speed= distance/time
Answer:
The entropy change of the air is 
Explanation:

is unknown
we can apply the following expression to find 


now substitute

To find entropy change of the air we can apply the ideal gas relationship
Δ

Δ

Δ