1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ymorist [56]
3 years ago
8

Writing an excellent problem statement will not help guide you through the rest of the process and steer you towards the BEST so

lution. True False
Engineering
1 answer:
Ilya [14]3 years ago
4 0

Answer:

Writing an excellent problem statement will not help guide you through the rest of the process and steer you towards the BEST solution.

False

Explanation:

An excellent problem statement sets the overall tone for the rest of the engineering process, whether it be at the analysis, design, or implementation stages.  This is why a problem statement must be focused, clear, and specific.  An excellent problem statement contains the problem definition, method for solving the problem (the claim proposed), purpose, statement of objectives, and scope.  For an excellent problem statement to be effective, it must also show the gap that is to be closed to achieve the intended objective.

You might be interested in
Given a mass-spring-damper system. The impulse response of strength 1 can be obtained from a unit step response by: ______
Alina [70]

Answer:

Multiplying impulse response by t  ( option D )

Explanation:

We can obtain The impulse response of strength 1 considering a unit step response by Multiplying impulse response by t .

When we consider the Laplace Domain, and the relationship between unit step and impulse, we can deduce that the Impulse response will take the inverse Laplace transform of the function ( transfer ) . Hence Multiplying impulse response by t will be used .

5 0
3 years ago
Steam at 20 bars is in the saturated vapor state (call this state 1) and contained in a pistoncylinderdevice with a volume of 0.
saul85 [17]

Answer:

Explanation:

Given that:

<u>At state 1:</u>

Pressure P₁ = 20 bar

Volume V₁ = 0.03 \mathbf{m^{3}}

From the tables at saturated vapour;

Temperature T₁ = 212.4⁰ C  ; v_1 = vg_1 = 0.0996 \mathbf{m^{3}} / kg

The mass inside the cylinder is m = 0.3 kg, which is constant.

The specific internal energy u₁ = ug₁ = 2599.2 kJ/kg

<u>At state 2:</u>

Temperature T₂ = 200⁰ C

Since the 1 - 2 occurs in an isochoric process v₂ = v₁ = 0.099 \mathbf{m^{3}} / kg

From temperature T₂ = 200⁰ C

v_f_2 = 0.0016 \ m^3/kg  

vg_2 = 0.127 \ m^3/kg  

Since  vf_2 < v_2 , the saturated pressure at state 2 i.e. P₂ = 15.5 bar

Mixture quality x_2 = \dfrac{v_2-vf_2}{vg_2 -vf_2}

x_2 = \dfrac{(0.099-0.0016)m^3/kg}{(0.127 -0.0016) m^3/kg}

x_2 = \dfrac{(0.0974)m^3/kg}{(0.1254) m^3/kg}

\mathsf{x_2 =0.78}

At temperature T₂, the specific internal energy u_f_2 = 850.6 \ kJ/kg , also ug_2 = 2594.3 \ kJ/kg

Thus,

u_2 = uf_2 + x_2 (ug_2 -uf_2)

u_2 =850.6  +0.78 (2594.3 -850.6)

u_2 =850.6  +1360.086

u_2 =2210.686 \ kJ/kg

<u>At state 3:</u>

Temperature T_3=T_2 = 200 ^0 C ,

V_3 = 2V_1 = 0.06 \ m^3

Specific volume v_3 = 0.2  \ m^3/kg

Thus; vg_3 =vg_2 = 0.127 \ m^3/kg ,

SInce v_3 > vg_3, therefore, the phase is in a superheated vapour state.

From the tables of superheated vapour tables; at v_3 = 0.2  \ m^3/kg and T₃ = 200⁰ C

The pressure = 10 bar and v =0.206 \ m^3/kg

The specific internal energy u_3 at the pressure of 10 bar = 2622.3 kJ/kg

The changes in the specific internal energy is:

u_2-u_1

= (2210.686 - 2599.2) kJ/kg

= -388.514 kJ/kg

≅ - 389 kJ/kg

u_3-u_2

= (2622.3 - 2210.686)  kJ/kg

= 411.614 kJ/kg

≅ 410 kJ/kg  

We can see the correct sketches of the T-v plot showing the diagrammatic expression in the image attached below.

3 0
3 years ago
Compare the use of a low-strength, ductile material (1018 CD) in which the stress-concentration factor can be ignored to a high-
kicyunya [14]

Answer:

Step 1 of 3

Case A:

AISI 1018 CD steel,

Fillet radius at wall=0.1 in,

Diameter of bar

From table deterministic ASTM minimum tensile and yield strengths for some hot rolled and cold drawn steels for 1018 CD steel

Tensile strength

Yield strength

The cross section at A experiences maximum bending moment at wall and constant torsion throughout the length. Due to reasonably high length to diameter ratio transverse shear will be very small compared to bending and torsion.

At the critical stress elements on the top and bottom surfaces transverse shear is zero

Explanation:

See the next steps in the attached image

5 0
3 years ago
Question 1: Final Results = What are the values of the resistances such that the gain = -100, Rin = 1 MI2. Don't use resistances
lidiya [134]

Answer:

Explanation:

In a study of algebra, you will encounter many families of equations, or groups of

equations that share common characteristics. Of interest to us here is the family of

linear equations in one variable, a study that lays the foundation for understanding

more advanced families. In addition to solving linear equations, we’ll use the skills we

develop to solve for a specified variable in a formula, a practice widely used in science,

business, industry, and research.

A. Solving Linear Equations Using Properties of Equality

An equation is a statement that two expressions are

equal. From the expressions and

we can form the equation

which is a linear equation in one variable. To solve

an equation, we attempt to find a specific input or xvalue that will make the equation true, meaning the

left-hand expression will be equal to the right. Using

Table 1.1, we find that is a

true equation when x is replaced by 2, and is a false

equation otherwise. Replacement values that make

the equation true are called solutions or roots of the equation.

4 0
2 years ago
. Two rods, with masses MA and MB having a coefficient of restitution, e, move
GarryVolchara [31]

Answer:

a) V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}

b) U_A = 3.66 m/s

V_B = 4.32 m/s

c) Impulse = 0 kg m/s²

d) percent decrease in kinetic energy = 47.85%

Explanation:

Let U_A be the initial velocity of rod A

Let U_B be the initial velocity of rod B

Let V_A be the final velocity of rod A

Let V_B be the final velocity of rod B

Using the principle of conservation of momentum:

M_AU_A + M_BU_B = M_AV_A + M_BV_B............(1)

Coefficient of restitution, e = \frac{V_B - V_A}{U_A - U_B}

V_A = V_B - e(U_A - U_B)........................(2)

Substitute equation (2) into equation (1)

M_AU_A + M_BU_B = M_A(V_B - e(U_A - U_B)) + M_BV_B..............(3)

Solving for V_B in equation (3) above:

V_B = \frac{M_AU_A(1+e) + (M_B - eM_A)U_B}{M_A + M_B}....................(4)

From equation (2):

V_B = V_A + e(U_A -U_B)......(5)

Substitute equation (5) into (1)

M_AU_A + M_BU_B = M_AV_A + M_B(V_A + e(U_A -U_B))..........(6)

Solving for V_A in equation (6) above:

V_A = \frac{(M_A - eM_B)U_A + M_BU_B(1+e)}{M_A + M_B}.........(7)

b)

M_A = 2 kg\\M_B = 1 kg\\U_B = -3 m/s( negative x-axis)\\e = 0.65\\U_A = ?

Rod A is said to be at rest after the impact, V_A = 0 m/s

Substitute these parameters into equation (7)

0 = \frac{(2 - 0.65*1)U_A - (1*3)(1+0.65)}{2+1}\\U_A = 3.66 m/s

To calculate the final velocity, V_B, substitute the given parameters into (4):

V_B = \frac{(2*3.66)(1+0.65) - (1 - (0.65*2))*3}{2+1}\\V_B = 4.32 m/s

c) Impulse, I = M_AV_A + M_BV_B - (M_AU_A + M_BU_B)

I = (2*0) + (1*4.32) - ((2*3.66) + (1*-3))

I = 0 kg m/s^2

d) %\triangle KE = \frac{(0.5 M_A V_A^2 + 0.5 M_B V_B^2) - ( 0.5 M_A U_A^2 + 0.5 M_B U_B^2)}{0.5 M_A U_A^2 + 0.5 M_B U_B^2} * 100\%

%\triangle KE = \frac{((0.5*2*0) + (0.5 *1*4.32^2)) - ( (0.5 *2*3.66^2) + 0.5*1*(-3)^2))}{ (0.5 *2*3.66^2) + 0.5*1*(-3)^2)} * 100\%

% \triangle KE = -47.85 \%

7 0
3 years ago
Other questions:
  • Is a jeep cherokee faster than a bmw 325i
    12·2 answers
  • Una empresa realizó en el ejercicio de compras al contado por valor
    9·1 answer
  • Write a Python program that does the following. Create a string that is a long series of words separated by spaces. The string i
    14·1 answer
  • An aluminium alloy bar of diameter 12.5 mm and length 27 m loaded in uniaxial tension to a force of 3 kN. Determine the length o
    15·1 answer
  • Which of the following sentences uses the word malleable correctly?
    7·2 answers
  • A _______ contact allows current to flow when the switch's operator is not activated.?
    6·1 answer
  • Identify five safety hazards that should be included in the design of the school
    6·1 answer
  • For RTK to work, what do we need besides two or more receivers collecting data from a sufficient number of satellites simultaneo
    11·1 answer
  • What is the hardest part of engineering?
    12·1 answer
  • Why is recycling important
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!