Answer:
The force applied on one wheel during braking = 6.8 lb
Explanation:
Area of the piston (A) = 0.4 
Force applied on the piston(F) = 6.4 lb
Pressure on the piston (P) = 
⇒ P = 
⇒ P = 16 
This is the pressure inside the cylinder.
Let force applied on the brake pad = 
Area of the brake pad (
)= 1.7 
Thus the pressure on the brake pad (
) = 
When brake is applied on the vehicle the pressure on the piston is equal to pressure on the brake pad.
⇒ P = 
⇒ 16 = 
⇒
= 16 × 
Put the value of
we get
⇒
= 16 × 1.7
⇒
= 27.2 lb
This the total force applied during braking.
The force applied on one wheel =
=
= 6.8 lb
⇒ The force applied on one wheel during braking.
I'm not sure. But it can be A or C.
Explanation:
m = kg. v=m/s. g=m/s^2. h= m
>>1/2mv^2=mgh
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m
>>1/2mv^2=mgh>> kg*(m/s)^2= kg*m/s^2*m>>kg m^2/s^2=kg m^2/s^2 the fraction 1/2 won't be able to make any changes to to the dimensional expression of energy i.e half of energy is still energy therefore you can neglect the number .
<u>>>kg m^2/s^2=kg m^2/s^2</u><u> </u>
<u>></u><u>></u><u>J</u>= J
Answer:
W = 30 N
Explanation:
Applying the summation of torques about the wedge for equilibrium, taking the clockwise direction as negative. Since the ruler is balanced horizontally about the wedge. Therefore, the summation of all torques acting about the wedge must be equal to zero.

<u>W = 30 N</u>
Sorry I can’t give the answer cause I don’t have the graph
I’m so sorry but if u give the graph I will be able to give the answer