The work done is equal to the change in potential energy which is:
P.E = mgh
P.E = 500 x 9.81 x 15
P.E = 73,575 J
Power = work / time
Power = 73,575 / 20
Power = 3,700 Watts
If the solution is treated as an ideal solution, the extent of freezing
point depression depends only on the solute concentration that can be
estimated by a simple linear relationship with the cryoscopic constant:
ΔTF = KF · m · i
ΔTF, the freezing point depression, is defined as TF (pure solvent) - TF
(solution).
KF, the cryoscopic constant, which is dependent on the properties of the
solvent, not the solute. Note: When conducting experiments, a higher KF
value makes it easier to observe larger drops in the freezing point.
For water, KF = 1.853 K·kg/mol.[1]
m is the molality (mol solute per kg of solvent)
i is the van 't Hoff factor (number of solute particles per mol, e.g. i =
2 for NaCl).
Answer:
The speed of the ambulance is 4.30 m/s
Explanation:
Given:
Frequency of the ambulance, f = 1790 Hz
Frequency at the cyclist, f' = 1780 Hz
Speed of the cyclist, v₀ = 2.36 m/s
let the velocity of the ambulance be 'vₓ'
Now,
the Doppler effect is given as:

where, v is the speed of sound
since the ambulance is moving towards the cyclist. thus, the sign will be positive
thus,

on substituting the values, we get

or
vₓ = 4.30 m/s
Hence, <u>the speed of the ambulance is 4.30 m/s</u>
Answer:
Skateboard
Explanation:
Acceleration is change in velocity over time.
a = Δv / Δt
The airplane's acceleration is:
a = (1005 km/h − 1000 km/h) / 10 s
a = 0.5 km/h/s
The skateboard's acceleration is:
a = (5 km/h − 0 km/h) / 1 s
a = 5 km/h/s