Mechanical energy is the energy that is possessed by an object due to its motion or due to its position. It can either be kinetics or potential. In this problem you know it starting position so you can calculate it's potential energy (PE):
<span>PE=mass∗gravity∗height=0.3kg∗9.8m/s2∗1.8m=?
</span>The answer will typically be given in joules:
1J=kg∗m2s2 Could be wrong... But I believe it is 5.3...? as a final product.
Answer:
Be serious or else CEO of brainly will kick you out
Answer:
Bouyancy
Explanation:
Bouyancy occurs when the upthrust exerted on an object is equal to the weight of object displaced. It is mostly applicable to low density objects for example balloon. When balloon is displaced in water, it floats. This is due to the effect of the upthrust acting on the balloon which allows the balloon to float and which is opposite the weight.
Note that the weight acts downwards the object while the upthrust always acts opposite (upward)
Answer:
Temperature at the exit = 
Explanation:
For the steady energy flow through a control volume, the power output is given as

Inlet area of the turbine = 
To find the mass flow rate, we can apply the ideal gas laws to estimate the specific volume, from there we can get the mass flow rate.
Assuming Argon behaves as an Ideal gas, we have the specific volume 
as


for Ideal gasses, the enthalpy change can be calculated using the formula

hence we have


<em>Note: to convert the Kinetic energy term to kilojoules, it was multiplied by 1000</em>
evaluating the above equation, we have 
Hence, the temperature at the exit = 