Answer:
The width of the strand of hair is 1.96 10⁻⁵ m
Explanation:
For this diffraction problem they tell us that it is equivalent to the diffraction of a single slit, which is explained by the equation
<h3> a sin θ =± m λ
</h3><h3 />
Where the different temrs are: “a” the width of the hair, λ the wavelength, θ the angle from the center, m the order of diffraction, which is the number of bright rings (constructive diffraction)
We can see that the diffraction angle is missing, but we can find it by trigonometry, where L is the distance of the strand of hair to the observation screen and "y" is the perpendicular distance to the first minimum of intensity
L = 1.25 m 100 cm/1m = 125 cm
y = 5.06 cm
Tan θ = y/L
Tan θ = 5.06/125
θ = tan⁻¹ ( 0.0405)
θ = 2.32º
With this data we can continue analyzing the problem, they indicate that they measure the distance to the first dark strip, thus m = 1
a = m λ / sin θ
a = 1 633 10⁻⁹ 1.25/sin 2.3
a = 1.96 10⁻⁵ m
a = 0.0196 mm
The width of the strand of hair is 1.96 10⁻⁵ m
This is not as simple as it looks.
His average speed is NOT (10km/hr + 50km/hr)/2 = 30 km/hr.
You have to use the definition of speed:
Speed = (total distance covered) / (time to cover the distance).
Let's say the distance up (and down) the hill is 'd' .
Then the time it takes to go up the hill is (d/10) hours.
And the time it takes to come down the hill is (d/50) hours.
Total distance = 2d km
Total time = (d/10) + (d/50) = (5d/50) + (d/50) = 6d/50
Speed = distance/time = 2d/(6d/50) = 100d/6d
<em>Speed = </em>100/6 = <em>16-2/3 km/hr</em>
Answer:
When boiling water is poured into a thick tumbler its inner surface expands. However, due to low thermal conductivity of glass, the expansion of outer surface of the tumbler is quite small. Due to uneven expansion of the outer and inner surfaces, the tumbler breaks.
Explanation:
hope it helps please mark me as a brainliest please
Answer:
B = 1.353 x 10⁻³ T
Explanation:
The Magnetic field within a toroid is given by
B = μ₀ NI/2πr, where N is the number of turns of the wire, μ₀ is the permeability of free space, I is the current in each turn and r is the distance at which the magnetic field is to be determined from the center of the toroid.
To find r we need to add the inner radius and outer radius and divide the value by 2. Hence,
r = (a + b)/2, where a is the inner radius and b is the outer radius which can be found by adding the length of a square section to the inner radius.
b = 25.1 + 3 = 28.1 cm
a = 25.1 cm
r = (25.1 + 28.1)/2 = 26.6 cm = 0.266m
B = 4π x 10⁻⁷ x 600 x 3/2π x 0.266
B = 1.353 x 10⁻³ T
The strength of the magnetic field at the center of the square cross section is 1.3 x 10⁻³ T
Goggles, a lab coat, chemical gloves, and close- toed shoes