SONAR stands for "sound navigation and ranging,” and it is used to map and explore the ocean floor.
In a string of length L, the wavelength of the n-th harmonic of the standing wave produced in the string is given by:

The length of the string in this problem is L=3.5 m, therefore the wavelength of the 1st harmonic of the standing wave is:

The wavelength of the 2nd harmonic is:

The wavelength of the 4th harmonic is:

It is not possible to find any integer n such that
, therefore the correct options are A, B and D.
Answer:
True The grid with more slits gives more angle separation increases
True. The grating with 10 slits produces better-defined (narrower) peaks
Explanation:
Such a system can be seen as a diffraction network in this case with different number of lines per unit length, the expression for the constructive interference of a diffraction network is
d sin θ = m λ
where d is the distance between slits or lines, m the order of diffraction and λ the wavelength.
For network with 5 slits
d = 1/5 = 0.2
For the network with 10 slits
d = 1/10 = 0.1
let's calculate the separation (teat) for each one
θ = sin⁻¹ (m λ / d)
for 5 slits
θ₅ = sin⁻¹ (m λ 5)
for 10 slits
θ₁₀ = sin⁻¹ (m λ 10)
we can appreciate that for more slits the angle increases
the intensity of a series of slits is
I = I₀ sin²2 (N d/2) / sin² d/2)
when there are more slits (N) the peaks have greater intensity and are more acute (half width decreases)
let's analyze the claims
False
True The grid with more slits gives more angle separation increases
False
True The expression for the intensity of the diffraction peaks the intensity of the peaks increases with the number of slits as well as their spectral width decreases
False
Answer:
F = 1.047 10⁻² N
Explanation:
Let's use kinematics to find the angular acceleration
w = w₀ + α t
as for rest w₀ = 0
w = α t
α = w / t
let's reduce the magnitudes to the SI system
w = 1000 rev / min (2π rad/ 1 rev) (1 min/ 60s) = 104.72 rad / s
m = 1.00 g (1 kg / 1000 g) = 1,000 10⁻³ kg
r = 10.0 cm (1 m / 100 cm) = 0.100 m
let's calculate
α = 104.72 / 1
α = 104.72 rad / s²
angular and linear variables are related
a = α r
a = 104.72 0.100
a = 10.47 m / s²
finally we substitute in Newton's second law
F = 1 10⁻³ 10.47
F = 1.047 10⁻² N
Answer:
A lone neutron spontaneously decays into a proton plus an electron.
Explanation:
In an atom, nuclei contain protons and neutrons, which are the fundamental particles of an atom. Neutrons are stable and uncharged particles inside a nucleus.
For 15 times during its lifetime, a free neutron decays and breaks down into more smaller particles.This breakdown causes problems in nuclear reactors, as they start decaying and emit radiations of different wavelengths.
A neutron undergoes the decaying process to produce an electron, a proton, and energy.
The reaction of neutron decay:
n0 → p+ + e− + νe