Answer:
A : hot and moist, maritime tropical
B: cold and dry, maritime polar
C: hot and moist , maritime tropical
D: cold and dry, continental polar
E: hot and moist , maritime tropical
F: cold and dry , maritime polar
Explanation:
Cold air is denser than warm air. The more water vapor that is in the air, the less dense the air becomes. That is why cold, dry air is much heavier than warm, humid air.
Maritime polar (mP) air masses are cool, moist, and unstable. Some maritime polar air masses originate as continental polar air masses over Asia and move westward over the Pacific, collecting warmth and moisture from the ocean.
Maritime tropical (mT) air masses are warm, moist, and usually unstable.
Answer:
The new period will be √6 *T
Explanation:
period ,T=2π√(L/g) ................equation 1
where T is the period on earth
gravitational acceleration on the moon is g/6
T1 = 2π√[L/(g/6)]
T1=2π√(6L/g) ...............equation 2
divide equation 2 by 1
T1/T =2π√(6L/g)÷2π√(L/g)
T1/T =√(6L/L)
T1/T =√6
T1 = √6 *T
The global warming is the uniform heating of the globe due to the effect of greenhouse gases.
Answer: Option B
<u>Explanation:</u>
Global warming is thus the theory that says that earth is warming up with an increase in temperature over time due to increment in the greenhouse gases.
These are greenhouse gases that are getting increased due to the human activity or say over exploitation of the natural resources. The heating of the globe has caused ozone layer depletion which is also causing warming.
Kepler's third law is used to determine the relationship between the orbital period of a planet and the radius of the planet.
The distance of the earth from the sun is
.
<h3>
What is Kepler's third law?</h3>
Kepler's Third Law states that the square of the orbital period of a planet is directly proportional to the cube of the radius of their orbits. It means that the period for a planet to orbit the Sun increases rapidly with the radius of its orbit.

Given that Mars’s orbital period T is 687 days, and Mars’s distance from the Sun R is 2.279 × 10^11 m.
By using Kepler's third law, this can be written as,


Substituting the values, we get the value of constant k for mars.


The value of constant k is the same for Earth as well, also we know that the orbital period for Earth is 365 days. So the R is calculated as given below.



Hence we can conclude that the distance of the earth from the sun is
.
To know more about Kepler's third law, follow the link given below.
brainly.com/question/7783290.
Answer:
F = MA
Explanation:
OP you didn't give us any examples, but force equals mass times acceleration is Newton's First Law.
Dropping a ball (mass) from the top of a building can show gravity, a form of acceleration.