The working equation to be used here is the Planck's equation. This was derived using the wave behavior theory of the light and electromagnetic waves. According to this equation, electron transfer from orbital to orbital in discrete packets of energy called quanta. When an electron moves to a higher energy level, it absorbs energy. On the other hand, when it lowers to an energy level, it releases energy by emitting light. Hence, the wavelength of the light or magnetic wave can be determined.
E = hν = hc/λ, where ν is the frequency, λ is the wavelength, h is the Planck's constant equal to 6.626×10⁻³⁴ J-s and c is the speed of light equal to 3×10⁸ m/s.
Knowing the energy to be 164 kJ or 164,000 J, the wavelength is equal to
164,000 = (6.626×10⁻³⁴)(3×10⁸ m/s)/λ
λ = 1.212×10⁻³⁰ meters
Answer:
Explanation:
Potential energy at the top of the slide
PE = mgh = 49(9.8)(3) = 1,440.6 J
Energy converted to work of friction
W = Fd = 35(10) = 350 J
Converted potential that becomes kinetic energy
1440.6 - 350 = 1090.6 J
KE = ½mv²
v = 
v = 
v = 6.671902...
v = 6.7 m/s
Answer:
The net force and the acceleration on the falling skydiver is upward
Explanation:
An upward net force on a downward falling object would cause that object to slow down. the skydiver this slows down. As the speed decreases, the amount of air resistance also decreases until once more the skydiver reaches a terminal velocity.
Answer: These apparent star tracks are in fact not due to the stars moving, but to the rotational motion of the Earth. As the Earth rotates with an axis that is pointed in the direction of the North Star, stars appear to move from east to west in the sky.
Explanation: why do the star constellations seem to move across the sky