For a:v = d / Δt
110 = 0.66 / Δt
Δt = 0.66 / 110
Δt = 0.006 s
the period is:
T = 2Δt
T = 2*0.006
T = 0.012 s
the frequency is the inverse of the period. so: f = 1 / T
f = 83.3333333 Hz (about; Hz = 1/s)
b. T = 2π√(m/k)
being the mass m = 200g = 0.2 kg = 2*10^-1 kg, π = 3.14 (about) and T = 0.012, k is equal to:
0.012 = 6.28√(2*10^-1 / k)
0.012 / 6.28 = √(2*10^-1 / k)
0.00191082803 = √(2*10^-1 / k)
2*10^-1/ k = 0.000003
2*10^-1 / k = 3*10^-6
k = 2*10^-1 / 3*10^-6
k = 6.67*10^-5
now using hooke's law:
F = -kx
F = - 6.67*10^-5* 3.3*10^-1
F = -2.20x10^-5m
F = -0.22 *10^4 N
At the subduction zone a very deep trench is formed in the ocean floor. Oceanic and oceanic plate convergence result in the formation of volcano chains. The crust that is pulled under or subducted melts to form magma. This magma rises to the top of the overriding oceanic plates and erupts on the ocean floor.
So the answer would be Volcano
First thing to do is to draw the system described above. Then, write an equation for the forces present.
<span>
</span>Σ<span>F = Fg - Ff
</span><span>0 = mgsin</span><span>∅</span><span> - umgcos</span><span>∅</span><span>0 = gsin</span><span>∅</span><span> - ugcos</span><span>∅</span><span>
u = tan</span><span>∅
</span>∅(max) = tan^-1 (u)<span>
</span>
Answer:
the ball didn't not reach the Maximum height because of the time interval
Answer:
E = 2.5 x 10⁻¹⁴ J
Explanation:
given,
diameter = 1.33 x 10⁻¹⁴ m
mass = 6.64 x 10⁻²⁷ kg
wavelength is equal to diameter
de broglie wavelength equal to diameter



v = 7.5 x 10⁶ m/s
Kinetic energy is equal to


E = 2.5 x 10⁻¹⁴ J