Answer:
F = 3.86 x 10⁻⁶ N
Explanation:
First, we will find the distance between the two particles:

where,
r = distance between the particles = ?
(x₁, y₁, z₁) = (2, 5, 1)
(x₂, y₂, z₂) = (3, 2, 3)
Therefore,

Now, we will calculate the magnitude of the force between the charges by using Coulomb's Law:

where,
F = magnitude of force = ?
k = Coulomb's Constant = 9 x 10⁹ Nm²/C²
q₁ = magnitude of first charge = 2 x 10⁻⁸ C
q₂ = magnitude of second charge = 3 x 10⁻⁷ C
r = distance between the charges = 3.741 m
Therefore,

<u>F = 3.86 x 10⁻⁶ N</u>
Cmndkdkkdnd djnd dhdbhd s ahah who w baggage wbhebwnwh