Answer: distance d = 4.73e10m
Explanation: Suppose the charge on the black hole is 5740 C which is a positive charge.
Using electric potential V formula:
V = kq / d
Where K = 9.05×10^9Nm^2/C
And e = 1.6×10^-19C
But you don't need to substitute it.
1090 V = 8.99e9N·m²/C² * 5740C /d
Make d the subject of formula
d = 4.73e10 m
Answer:
15.19°, 31.61°, 51.84°
Explanation:
We need to fin the angle for m=1,2,3
We know that the expression for wavelenght is,

Substituting,


Once we have the wavelenght we can find the angle by the equation of the single slit difraction,

Where,
W is the width
m is the integer
the wavelenght
Re-arrange the expression,

For m=1,

For m=2,

For m=3,

<em>The angle of diffraction is directly proportional to the size of the wavelength.</em>
Answer:
16.6 N
Explanation:
m = 0.52 kg, v₀ = 0, v = 8.6 m/s, t = 0.27 s
a = (v - v₀)/t
F = ma = m(v - v₀)/t = 0.52 (8.6 - 0)/0.27 = 16.6 N
According to the conservation of mechanical energy, the kinetic energy just before the ball strikes the ground is equal to the potential energy just before it fell.
Therefore, we can say KE = PE
We know that PE = m·g·h
Which means KE = m·g·h
We can solve for h:
h = KE / m·g
= 20 / (0.15 · 9.8)
= 13.6m
The correct answer is: the ball has fallen from a height of 13.6m.