Explanation:
Given parameters:
Initial velocity = 72km/hr
Final velocity = 0km/hr
Time taken = 25s
Unknown:
Acceleration = ?
Solution:
To solve this problem, convert km/hr to m/s;
1000m = 1km
3600s = 1hr
72km/hr;
1km/hr = 0.278m/s
72km/hr = 0.278 x 72 = 20.02m/s
Acceleration is the change in velocity divided by the time taken;
Acceleration =
Acceleration =
= -0.8m/s
The car is actually decelerating at a rate of 0.8m/s
Answer:
t should be 3.57 second
Explanation:
Formula used is v = u+at
In which v is final velocity, u is initial velocity, a is acceleration and t is time.
Substitute each of the info given into the formula and calculate.
49 = 24 + (7)t
t = 3.57s
<u>26mm</u> is the thinnest thickness of oil that will brightly reflect the light.
What is wavelength ?
The distance over which a periodic wave's shape repeats is known as the wavelength in physics. It is a property of both traveling waves and standing waves as well as other spatial wave patterns. It is the distance between two successive corresponding locations of the same phase on the wave, such as two nearby crests, troughs, or zero crossings. The spatial frequency is the reciprocal of wavelength. The Greek letter lambda () is frequently used to represent wavelength. The term wavelength is also occasionally used to refer to modulated waves, their sinusoidal envelopes, or waves created by the interference of several sinusoids.
To learn more about wavelength visit:
brainly.com/question/16051869
#SPJ4
Answer:
The frequencies are 
Explanation:
From the question we are told that
The length of the ear canal is 
The speed of sound is assumed to be 
Now taking look at a typical ear canal we see that we assume it is a closed pipe
Now the fundamental harmonics for the pipe(ear canal) is mathematically represented as

substituting values


Also the the second harmonic for the pipe (ear canal) is mathematically represented as
substituting values
Given that sound would be loudest in the pipe at the frequency, it implies that the child will have an increased audible sensitivity at this frequencies
Answer:
Maximum height reached by the rocket is

total time of the motion of rocket is given as

Explanation:
Initial speed of the rocket is given as

acceleration of the rocket is given as

engine stops at height h = 150 m
so the final speed of the rocket at this height is given as



so maximum height reached by the rocket is given as the height where its final speed becomes zero
so we will have



Now the total time of the motion of rocket is given as
1) time to reach the height of 150 m



2) time to reach ground from this height



so total time of the motion of rocket is given as
