Answer:
a) p = m1 v1 + m2 v2
, b) dp / dt = m1 a1 + m2 a2
, c) It is equivalent to force
dp / dt = 0
Explanation:
In this problem we have two blocks and the system is formed by the two bodies.
Part A. Initially they ask us to find the moment of the whole system
p = m1 v1 + m2 v2
Part B.
Find the derivative
dp / dt = m1 dv1dt + m2 dv2 / dt
dp / dt = m1 a1 + m2 a2
Part C.
Let's analyze the dimensions
m a = [kg] [m / s2] = [N]
It is equivalent to force
Part d
Acceleration is due to a net force applied
Part e
The acceleration of block 1 is due to the force exerted by block 2 during the moment change
Part f
Force of block 1 on block 2
True f12 = m1a1 f21 = m2a2
Part g
By the law of action and reaction are equal magnitude F12 = f21
Part H
dp / dt = 0
Isolated system F12 = F21 and the masses are constant. The total moment is only redistributed
Answer
given,
flow rate = p = 660 kg/m³
outer radius = 2.8 cm
P₁ - P₂ = 1.20 k Pa
inlet radius = 1.40 cm
using continuity equation
A₁ v₁ = A₂ v₂
π r₁² v₁ = π r₁² v₂



Applying Bernoulli's equation





v₂ = 1.97 m/s
b) fluid flow rate
Q = A₂ V₂
Q = π (0.014)² x 1.97
Q = 1.21 x 10⁻³ m³/s
As the full spectrum of visible light travels through a prism, the wavelengths separate into the colors of the rainbow because each color is a different wavelength. Violet has the shortest wavelength, at around 380 nanometers, and red has the longest wavelength, at around 700 nanometers.
The correct answer among the choices provided is option C. The magnitude of the sum of 20 and 25 might be 12. Inequality triangle equation is used to determine if 12 is right.
<span>12+20 > 25 (correct)
12+25 > 20 (correct)
20+25 > 12 (correct)</span>
The distance you should cover is: S=150 km
Your average speed is: v=50 km/h
Therefore, to calculate the time you will take to cover this distance, we can use the basic relationship between space, distance and time, and we find:

so, you will take 3 hours.