Answer:
FALSE
Explanation:
The answer is false.
The speed of the sound in water is faster when compared to the speed of sound in air. This is because, the particles in air is loosely packed and are far from each other as compared to water or liquid.
The water particles are close to each other than air particles, so water particles are able to transmit the vibrations of the sound faster than the air particles.
Therefore sound waves travels faster in water than in air.
Answer:
t = 0.657 s
Explanation:
First, let's use the appropiate equations to solve this:
V = √T/u
This expression gives us a relation between speed of a disturbance and the properties of the material, in this case, the rope.
Where:
V: Speed of the disturbance
T: Tension of the rope
u: linear density of the rope.
The density of the rope can be calculated using the following expression:
u = M/L
Where:
M: mass of the rope
L: Length of the rope.
We already have the mass and length, which is the distance of the rope with the supports. Replacing the data we have:
u = 2.31 / 10.4 = 0.222 kg/m
Now, replacing in the first equation:
V = √55.7/0.222 = √250.9
V = 15.84 m/s
Finally the time can be calculated with the following expression:
V = L/t ----> t = L/V
Replacing:
t = 10.4 / 15.84
t = 0.657 s
Answer:
ice (solid), water (liquid) and vapor (gas)
Explanation: