I would think radon would be the most reactive.
Answer:
The transition with the greatest distance is 5p → 1s, which is n = 5 going to n = 1. This means this transition also has the largest energy and frequency. Therefore, the electron transition that produces light of the highest frequency in the hydrogen atom is a. 5p → 1s.
Explanation:
The energy requirement order for excitation for different transitions is as follows. n→∏* transition requires lowest energy while σ→σ* requires highest amount of energy
Ozone which is present in the stratospheric region of atmosphere is helpful for preventing harmful UV rays from reaching the surface of earth. Due to human activity, several compounds (specifically chlorofluorocarbons) are released in atmosphere. Due to inherent chemical stability of these compounds, the remain stable in lower region of atmosphere and slowly diffuse into stratosphere. On reaching the stratosphere, these compounds reacts with ozone and thereby depletes the effective concentration of ozone present in atmosphere. Hence, <span>the Montreal Protocol was signed in 1987 by major countries of the world. This aim of this protocol was to protect the stratospheric ozone layer by phasing out the production and consumption of ozone-depleting substances.</span>
Answer:
24.47 L
Explanation:
Using the general gas law equation:
PV = nRT
Where;
P = pressure (atm)
V = volume (L)
n = number of moles (mol)
R = 0.0821 Latm/molK
T = temperature (K)
According to the provided information in this question,
P = 1.0 atm
V = ?
n = 1 mol
T = 25°C = 25 + 273 = 298K
Using PV = nRT
V = nRT ÷ P
V = 1 × 0.0821 × 298 ÷ 1
V = 24.465 ÷ 1
V = 24.465
V = 24.47 L