Answer:
8. 2.75·10^-4 s^-1
9. No, too much of the carbon-14 would have decayed for radiation to be detected.
Explanation:
8. The half-life of 42 minutes is 2520 seconds, so you have ...
1/2 = e^(-λt) = e^(-(2520 s)λ)
ln(1/2) = -(2520 s)λ
-ln(1/2)/(2520 s) = λ ≈ 2.75×10^-4 s^-1
___
9. Reference material on carbon-14 dating suggests the method is not useful for time periods greater than about 50,000 years. The half-life of C-14 is about 5730 years, so at 65 million years, about ...
6.5·10^7/5.73·10^3 ≈ 11344
half-lives will have passed. Whatever carbon 14 may have existed at the time will have decayed completely to nothing after that many half-lives.
Answer:
I THINK IT'S <em>D.</em><em>.</em><em>.</em><em>.</em>
<em>HOPE </em><em>SO</em>
Oh but they are !
Newton's 3rd law of motion says that for every action, the <em><u>re</u></em>action is
equal and opposite. That's as balanced as you can get.
Answer:
The convection process plays an important role in the liquid. Due to the increasing heat supply or high amount of temperature, the fluid gets heated up, as a result of which it becomes warm, less dense and eventually rises up forming convection cells.
In the interior of the earth, the hot molten rocks get heated up due to the heat supplied by the core of the earth. This makes the magma warm and less dense and rises upward forming convection currents in the mantle.
This convection process is similar to the convection cells that form in the atmosphere, where the hot, less dense air rises up in the atmosphere forming a low-pressure zone. This uprising air forms convection cells, in which the warm air rises and as it rises high in the atmosphere, the temperature becomes low, making the air cold and it eventually sinks.
Explanation:
Given that,
Mass of the car, m₁ = 1250 kg
Initial speed of the car, u₁ = 7.39 m/s
Mass of the truck, m₂ = 5380 kg
It is stationary, u₂ = 0
Final speed of the truck, v₂ = 2.3 m/s
Let v₁ is the final velocity of the car. Using the conservation of momentum as :
So, the final velocity of the car is 2.5 m/s but in opposite direction. Hence, this is the required solution.