Answer:
783.2 N.m or Joules
Explanation:

Work done when a force F is applied to move an object by a displacement d meters
where cos(Ф) is the angle between applied force F and displacement d
Since the weightlifter is applying the force upward and the set of weight also move upward therefore, both are in same direction hence angle will be zero.
Now lets substitute the given values into the work equation:

since cos(0)=1


or

Since the unit of Force is Newton (N) and the unit of displacement is meters (m) therefore, unit of work done will be N.m
Note: 1 N.m is equivalent to 1 joule
Walt and Mary are my Customers at this point.
To construct proper client relationships you need to: greet clients and approach them in a way that is herbal and suits the character scenario. show customers that you recognize what their desires are. be given that a few humans may not want your merchandise and concentrate on constructing relationships with people who do.
Use the time period clients, with an apostrophe before the “s” to expose a possessive form for a single consumer. Use the time period clients', with an apostrophe after the “s” to show the possessive plural shape of a couple of patrons. Do now not use an apostrophe if there's no possessive indication needed.
The definition of a consumer is a person who buys services or products from a store, restaurant, or different retail vendor. An example of a patron is someone who is going to an electronics save and buys a tv. (Casual) a person, mainly one engaging in a few types of interaction with others.
Learn more about the Customers herehttps://brainly.com/question/24448358
#SPJ1
Mass = 1.2 kg = 1200 grams.
Volume = mass/density = 1200 cm3.
Hope this helps!
Answer:
2.5 kg.m/s
Explanation:
Taking left side as positive while right side direction as negative then
Momentum, p= mv where m is the mass of the object and v is the velocity of travel
Momentum for ball moving towards right side=mv=2.5*-3=-7.5 kg.m/s
Momentum for the ball moving towards the left side=mv=2.5*4=10 kg.m/s
Total momentum=-7.5 kg.m/s+10 kg.m/s=2.5 kg.m/s
To solve this problem, we should recall the law of
conservation of energy. That is, the heat lost by the aluminium must be equal
to the heat gained by the cold water. This is expressed in change in enthalpies
therefore:
- ΔH aluminium = ΔH water
where ΔH = m Cp (T2 – T1)
The negative sign simply means heat is lost. Therefore we
calculate for the mass of water (m):
- 0.5 (900) (20 – 200) = m (4186) (20 – 0)
m = 0.9675 kg
Using same mass of water and initial temperature, the final
temperature T of a 1.0 kg aluminium block is:
- 1 (900) (T – 200) = 0.9675 (4186) (T – 0)
- 900 T + 180,000 = 4050 T
4950 T = 180,000
T = 36.36°C
The final temperature of the water and block is 36.36°C