Answer:
Conociendo la velocidad inicial del proyectil y el angulo de lanzamiento con respecto ala horizontal.
Explanation:
Para poder anticipar la caída del proyectil es importante conocer la velocidad inicial del proyectil y el angulo de disparo del proyectil con respecto a la horizontal.
A continuación se presenta un diagrama o esquema donde se pueden ver estas variables y se explicaran a la brevedad:
Para poder encontrar el rango que es la máxima distancia horizontal recorrida por el proyectil debemos utilizar la siguiente ecuación:
![x=(v_{o})_{x} *t\\where:\\(v_{o})_{x} = velocidad inicial x-component [m/s]\\t= time [s]](https://tex.z-dn.net/?f=x%3D%28v_%7Bo%7D%29_%7Bx%7D%20%2At%5C%5Cwhere%3A%5C%5C%28v_%7Bo%7D%29_%7Bx%7D%20%3D%20velocidad%20inicial%20%20x-component%20%5Bm%2Fs%5D%5C%5Ct%3D%20time%20%5Bs%5D)
Para poder encontrar el tiempo debemos utilizar la siguiente ecuación:
![y=(v_{y} )_{o}*t-0.5*g*t^{2} \\donde:\\(v_{y} )_{o}= velocidad inicial componente y [m/s]\\g = gravity = 9.81 [m/s^2]\\t = time [s]](https://tex.z-dn.net/?f=y%3D%28v_%7By%7D%20%29_%7Bo%7D%2At-0.5%2Ag%2At%5E%7B2%7D%20%20%5C%5Cdonde%3A%5C%5C%28v_%7By%7D%20%29_%7Bo%7D%3D%20velocidad%20inicial%20componente%20y%20%5Bm%2Fs%5D%5C%5Cg%20%3D%20gravity%20%3D%209.81%20%5Bm%2Fs%5E2%5D%5C%5Ct%20%3D%20time%20%5Bs%5D)
En la anterior ecuación, igualamos y = 0, ya que cuando el proyectil cae al suelo la distancia vertical es cero. De esta manera podemos encontrar el tiempo t, ya que conocemos la velocidad inicial del proyectil en la componente y.
Seguidamente reemplazamos t en la primera ecuacion y encontramos la distancia x o el rango.
In a process called “photosynthesis,” plants use the energy in sunlight to convert CO2 and water to sugar and oxygen. The plants use the sugar for food; food that we use, too, when we eat plants or animals that have eaten plants and they release the oxygen into the atmosphere.
So it’s PHOTOSYNTHESIS
The original Coulomb force between the charges is:
Fc=(k*Q₁*Q₂)/r², where k is the Coulomb constant and k=9*10⁹ N m² C⁻², Q₁ is the first charge, Q₂ is the second charge and r is the distance between the charges.
The magnitude of the force is independent of the sign of the charge so I can simply say they are both positive.
Q₁ is decreased to Q₁₁=(1/3)*Q₁=Q₁/3 and
Q₂ is decreased to Q₂₂=(1/2)*Q₂=Q₂/2.
New force:
Fc₁=(k*Q₁₁*Q₂₂)r², now we input the decreased values of the charge
Fc₁=(k*{Q₁/3}*{Q₂/2})/r², that is equal to:
Fc₁=(k*(1/3)*(1/2)*Q₁*Q₂)/r²,
Fc₁=(k*(1/6)*Q₁*Q₂)/r²
Fc₁=(1/6)*(k*Q₁*Q₂)/r², and since the original force is: Fc=(k*Q₁*Q₂)/r² we get:
Fc₁=(1/6)*Fc
So the magnitude of the new force Fc₁ with decreased charges is 6 times smaller than the original force Fc.
The final temperature is 83 K.
<u>Explanation</u>:
For an adiabatic process,


Given:-



(the gas is monoatomic)

T = 275
0.30
T = 83 K.