Scalar Quantity :-
→ These are the quantities with magnitude only . These quantities doesn't have to be mentioned with direction
eg.)=> Mass , Temprature .
Vector Quantity :-
→ These quantities are described with both Magnitude and Direction . These quantities follow special type of algebra called Vector algebra .
eg.)=> Force , Displacement
_______________________________
Hope It Helps You. ☺
Answer:
a)
, b) 
Explanation:
a) The equation for vertical velocity is obtained by deriving the function with respect to time:

The velocities at given instants are, respectivelly:


Answer:
270 m
Explanation:
Given:
v₀ = 63 m/s
a = 2.8 m/s²
t = 4.0 s
Find: Δx
Δx = v₀ t + ½ at²
Δx = (63 m/s) (4.0 s) + ½ (2.8 m/s²) (4.0 s)²
Δx = 274.4 m
Rounded to two significant figures, the displacement is 270 meters.
Answer:
F₁ = 4 F₀
Explanation:
The force applied on the string by the ball attached to it, while in circular motion will be equal to the centripetal force. Therefore, at time t₀, the force on ball F₀ is given as:
F₀ = mv₀²/r --------------- equation (1)
where,
F₀ = Force on string at t₀
m = mass of ball
v₀ = speed of ball at t₀
r = radius of circular path
Now, at time t₁:
v₁ = 2v₀
F₁ = mv₁²/r
F₁ = m(2v₀)²/r
F₁ = 4 mv₀²/r
using equation (1):
<u>F₁ = 4 F₀</u>
Answer:
5.62 m/s
Explanation:
Newton's law of motion can be used to determine the maximum speed of the elevator. In the question, we are given:
Force exerted by the elevator (R) = 1.7 times the weight of the passenger (m*g)
Thus: R = 1.7*m*g
Distance (s) = 2.3 m
Newton's second law of motion: R - m*g = m*a
1.7*m*g - m*g = m*a
a = 0.7*m*g/m = 0.7*g = 0.7*9.8 = 6.86 m/s²
To determine the maximum speed:



Therefore, the elevator maximum speed is equivalent to 5.62 m/s.