Light. The black hole is a vacuum, and not even light can escape it's suction
First, we will get the distance traveled before the driver applied the brakes.
distance = velocity * time
distance = 25*0.34 = 8.5 m
Now, we will calculated the distance that the car traveled after the driver applied the brakes. To do this, we will use the equation of motion:
<span>vf^2 = vi^2 + 2*a*d where:
</span>vf = zero, vi = 25 m/s and a = -7 m/s^2
Note: The negative sign is only to show deceleration
d = <span> 1/2*(625) /(7) = 44.6428 m
The total stopping distance =</span> 8.5 + 44.6428 = 53.1428 m
C. hydrogen accreted onto a white dwarf from a close companion rapidly fuses to helium, releasing a large amount of energy.
The accreted material, composed mainly of hydrogen, is compacted on the surface of the white dwarf due to the intense gravitational force on that place. As material accumulates, The white dwarf becomes increasingly hot, until it reaches the critical temperature for ignition of nuclear fusion.
Answer: 7.41 m/s
Explanation: By using the law of of energy, kinetic energy of the brick as it falls equals the potential energy before falling.
Kinetic energy = mv²/2, potential energy = mgh
mv²/2 = mgh
v²/2 = gh
v² = 2gh
v = √2gh
Where g = 9.8 m/s², h = 2.80m
v = √2×9.8×2.8 = 7.41 m/s
Answer:
Earth: 22.246 N
Moon: 3.71 N
Jupiter: 58.72 N
Explanation:
The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.
To calculate anything, we need to convert to standard measurements.
5.00 lbs = 2.27 kg
On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N
Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N
Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N