Explanation:
The given data is as follows.
Mass, m = 75 g
Velocity, v = 600 m/s
As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.
where,
= mass of the projectile
= mass of block
v = velocity after the impact
Now, putting the given values into the above formula as follows.
![75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v](https://tex.z-dn.net/?f=75%2810%5E%7B-3%7D%29%20%5Ctimes%20600%20%3D%20%5B%2875%20%5Ctimes%2010%5E%7B-3%7D%29%20%2B%2050%5D%20%5Ctimes%20v)
= 
v = 0.898 m/s
Now, equation for energy is as follows.
E = 
= 
= 13500 J
Now, energy after the impact will be as follows.
E' = ^{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B75%20%5Ctimes%2010%5E%7B-3%7D%20%2B%2050%5D%280.9%29%5E%7B2%7D)
= 20.19 J
Therefore, energy lost will be calculated as follows.
= E E'
= (13500 - 20) J
= 13480 J
And, n = 
= 
= 99.85
= 99.9%
Thus, we can conclude that percentage n of the original system energy E is 99.9%.
Answer:
The power output of this engine is 
The the maximum (Carnot) efficiency is 
The actual efficiency of this engine is 
Explanation:
From the question we are told that
The temperature of the hot reservoir is 
The temperature of the cold reservoir is 
The energy absorbed from the hot reservoir is 
The energy exhausts into cold reservoir is 
The power output is mathematically represented as

Where t is the time taken which we will assume to be 1 hour = 3600 s
W is the workdone which is mathematically represented as

substituting values

So


The Carnot efficiency is mathematically represented as



The actual efficiency is mathematically represented as

substituting values


Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 
