1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vlad1618 [11]
3 years ago
11

A battery has a terminal voltage of 12.0 V when no current flows. Its internal resistance is 2.0 Ω. If a 4.6 Ω resistor is conne

cted across the battery terminals, what is the terminal voltage and what is the current through the 4.6 Ω resistor?

Physics
2 answers:
rosijanka [135]3 years ago
5 0

Answer:

Check attachment for solution

Explanation:

Given that 12V battery

san4es73 [151]3 years ago
4 0

Answer:

Terminal voltage = 8.36 V

Current = 1.82 A

Explanation:

E.M.F of battery = 12V

Internal resistance of battery (r) = 2Ω

Resistance of resistor (R) = 4.6Ω

Now the formula for terminal voltage across the battery is;

V = ε - Ir

Where ε is EMF and I is electric current

Using ohms law, we know that V = IR and I = V/R.

Thus, let's put V/R for current in the potential difference equation;

V = ε - r(V/R)

Thus, lets make V the subject of the formula ;

V + (rV/R) = ε

V(1 + r/R) = ε

So, V = ε/(1 + r/R)

V = 12/(1 + (2/4.6))

V = 12/(1 + 0.4348)

V = 12/1.4348 = 8.36 V

Thus from V=IR, we can find current. So 8.36 = I(4.6)

I = 8.36/4.6 = 1.82 A

You might be interested in
The three particles that make up atoms are Question 9 options: protons, neutrons, and isotopes. positives, negatives, and neutra
serious [3.7K]
Answer: protons , neutrons and electrons
3 0
3 years ago
A 75-g projectile traveling at 600 m /s strikes and becomes embedded in the 40-kg block, which is ini-tially stationary. Compute
levacccp [35]

Explanation:

The given data is as follows.

          Mass, m = 75 g

         Velocity, v = 600 m/s

As no external force is acting on the system in the horizontal line of motion. So, the equation will be as follows.

          m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

where,  m_{1} = mass of the projectile

            m_{2} = mass of block

              v = velocity after the impact

Now, putting the given values into the above formula as follows.

              m_{1}v_{1_{i}} = (m_{1} + m_{2})vi

         75(10^{-3}) \times 600 = [(75 \times 10^{-3}) + 50] \times v

                                  = \frac{45}{50.075}

                              v = 0.898 m/s

Now, equation for energy is as follows.

               E = \frac{1}{2}mv^{2}

                  = \frac{1}{2} \times (75 \times 10^{-3} + 50) \times (600)^{2}

                  = 13500 J

Now, energy after the impact will be as follows.

             E' = \frac{1}{2}[75 \times 10^{-3} + 50](0.9)^{2}

                 = 20.19 J

Therefore, energy lost will be calculated as follows.

           \Delta E = E  E'

                       = (13500 - 20) J

                       = 13480 J

And,   n = \frac{\Delta E}{E}

             = \frac{13480}{13500} \times 100

             = 99.85

             = 99.9%

Thus, we can conclude that percentage n of the original system energy E is 99.9%.

7 0
3 years ago
Read 2 more answers
An engine draws energy from a hot reservoir with a temperature of 1250 K and exhausts energy into a cold reservoir with a temper
dimulka [17.4K]

Answer:

The power output of this engine is  P =  17.5 W

The  the maximum (Carnot) efficiency is  \eta_c  = 0.7424

The  actual efficiency of this engine is  \eta _a  = 0.46

Explanation:

From the question we are told that

    The temperature of the hot reservoir is  T_h = 1250 \ K

      The temperature of the cold reservoir  is  T_c  =  322 \ K

     The energy absorbed from the hot reservoir is E_h  = 1.37 *10^{5} \ J

       The energy exhausts into  cold reservoir is  E_c  = 7.4 *10^{4} J

The power output is mathematically represented as

      P  =  \frac{W}{t}

Where t is the time taken which we will assume to be 1 hour =  3600 s  

W is the workdone which is mathematically represented as

      W =  E_h  -E_c

substituting values

       W = 63000 J

So

    P =  \frac{63000}{3600}

    P =  17.5 W

The Carnot efficiency is mathematically represented as

          \eta_c  =  1 - \frac{T_c}{T_h}

         \eta_c  =  1 - \frac{322}{1250}

         \eta_c  = 0.7424

The actual efficiency is mathematically represented as

        \eta _a  =   \frac{W}{E_h}

substituting values

         \eta _a  =  \frac{63000}{1.37*10^{5}}

         \eta _a  = 0.46

     

7 0
3 years ago
What is the reflectivity of a glass surface (n =1.5) in air (n = 1) at an 45° for (a) S-polarized light and (b) P-polarized ligh
Goshia [24]

Answer:

a) R_s = 0.092

b) R_p = 0.085

Explanation:

given,

n =1.5 for glass surface

n = 1 for air

incidence angle = 45°

using Fresnel equation of reflectivity of S and P polarized light

R_s=\left | \dfrac{n_1cos\theta_i-n_2cos\theta_t}{n_1cos\theta_i+n_2cos\theta_t} \right |^2\\R_p=\left | \dfrac{n_1cos\theta_t-n_2cos\theta_i}{n_1cos\theta_t+n_2cos\theta_i} \right |^2

using snell's law to calculate θ t

sin \theta_t = \dfrac{n_1sin\theta_i}{n_2}=\dfrac{sin45^0}{1.5}=\dfrac{\sqrt{2}}{3}

cos \theta_t =\sqrt{1-sin^2\theta_t} = \dfrac{sqrt{7}}{3}

a) R_s=\left | \dfrac{\dfrac{1}{\sqrt{2}}-\dfrac{1.5\sqrt{7}}{3}}{\dfrac{1}{\sqrt{2}}+\dfrac{1.5\sqrt{7}}{3}} \right |^2

R_s = 0.092

b) R_p=\left | \dfrac{\dfrac{\sqrt{7}}{3}-\dfrac{1.5}{\sqrt{2}}}{\dfrac{\sqrt{7}}{3}+\dfrac{1.5}{\sqrt{2}}} \right |^2

R_p = 0.085

3 0
3 years ago
A metal pot feels hot to the touch, but the plastic handle does not. Which type of material is the plastic handle? A. A thermal
gtnhenbr [62]
D is the answer..........

3 0
3 years ago
Read 2 more answers
Other questions:
  • How far will a runner travel at an average speed of 5m/s for 20 minutes?
    11·1 answer
  • A student combined equal amounts of two solutions. One solution had a pH of 2 and the other had a pH of 12. Which would most lik
    13·2 answers
  • Oceans experience very small temperature changes causing nearby areas to
    14·1 answer
  • True or False. If a desk is pushed at a
    13·1 answer
  • A particular person's eardrum is circular, with a diameter of 7.90 mm. How much sound energy (in J) is delivered to an eardrum i
    6·2 answers
  • What sentence best supports the statement that hormones are involved in the regulation of homeostasis? A. The hormone cortisol s
    14·1 answer
  • 9. Which of the following statements is true about scientific theories? (1 point)
    11·2 answers
  • Two loudspeakers (A and B) are 3.20m apart and emitting a sound with a frequency of 400Hz. An observer is 2.10m directly in fron
    12·1 answer
  • "require people to consider what is right and wrong"
    15·1 answer
  • What is the relationship between resistance and current.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!