Answer:
A point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
Explanation:
We can find the distance with the following equation since the acceleration is cero (the disk rotates at a constant rate):

Where:
v: is the tangential speed of the disk
t: is the time = 30 s
The tangential speed can be found as follows:

Where:
ω: is the angular speed = 100 rpm
r: is the radius = 50 cm = 0.50 m
Now, the distance traveled by the disk is:

Therefore, a point on the outside rim will travel 157.2 meters during 30 seconds of rotation.
I hope it helps you!
Answer:
acceleration a = 1.04 m/s2
Explanation:
Assume the train has a speed of 23m/s when the last car passes the railway workers. Once this happens the last car would have traveled a total distance of the 180m distance between the railway worker standing 180 m from where the front of the train started plus the 75m distance from the first car to the last car:
s = 75 + 180 = 255 m
We can use the following equation of motion to find out the distance traveled by the car:
where v = 23 m/s is the velocity of the car when it passes the worker,
= 0m/s is the initial velocity of the car when it starts, a m/s2 is the acceleration, which we are looking for.



Answer:
C/100 = (F-32) / 180
or, C/5 = (F-32)/9
Explanation:
relation between any two scales is given by:
(X- lower fixed point ) / (upper fixed point -lower fixed point)
where X is any temperature
The second runner must run 3.3m/s. If the leading runner is 1.5 seconds ahead and there are 30m left, the second runner would need to run slightly faster than the lead in order to finish at the same time. To calculate this I did 30/1.5 which gave me 0.05. I added this onto the speed of the lead runner to get 3.3m/s :)