Answer:
a) x = 40 t
, y = 39 t
, z = 6 + 32 t - 16 t
², b) x = 80 feet
, y = 78 feet
, the ball came into the field
Explanation:
a) This is a projectile launch exercise, where in the x and y axes there is no acceleration and in the z axis the acceleration of the acceleration of gravity, let's write the equations of motion in each axis
Since the cast is in the center of the field, let's place the coordinate system
x₀ = 0
y₀ = 0
z₀ = 6 feet
x-axis (towards end zone, GOAL zone)
x = xo + v₀ₓ t
x = 40 t
y-axis (field width)
y = y₀ +
t
y = 39 t
z axis (vertical)
z = z₀ + v_{oz} t - ½ g t²
z = 6 + 32 t - ½ 32 t²
z = 6 + 32 t - 16 t
²
b) The player catches the ball at the same height as it came out, so we can find the time it takes to arrive
z = 6
6 = 6 + 32 t - 16 t²
(t - 2)t = 0
t=0 s
t= 2 s
The ball position
x = 40 2
x = 80 feet
y = 39 2
y = 78 feet
the dimensions of the field from the coordinate system (center of the field) are
x_total = 150 feet
y _total = 80 feet
so we can see that the ball came into the field
If you have 12 atoms of hydrogen before a chemical reaction, the number of hydrogen atoms that will be present after the chemical reaction is 12 atoms.
The Law of Conservation of Mass (LOCOM) states that mass is neither created nor destroyed before and after any chemical reaction.
According to the Law of Conservation of Mass (LOCOM), a balanced chemical equation requires that the number of atoms on the reactant side must be equal to the number of atoms on the product side of any chemical reaction.
In this context, a chemical reaction having 12 atoms of hydrogen as reactants at the beginning, should also produce a total of 12 atoms of hydrogen as products at the end of the chemical reaction.
The ratio of output force to the input force is generally the mechanical advantage of the machine.
I just woke him crying crying laughing crying and laughing I’m so mad he got me blocked him lol I got a hold on her phone the answer is 0 m