Both the increase in the boling point and the depression on the freezing point are colliative properties.
This is, they are proportional to the number of particles dissolved in the solvent, which is measured by the molality of the solution and the factor i (Van'f Hoff).
The answer to the question is that 1) the boling point of a solution of water and calcium chloride at standard pressure will be higher than the normal boiling point of pure water, and 2) the freezing point of a solution of water and calcium chloride at standard pressure will be lower than the normal freezing point of pure water.
Answer:
0.6 moles NH₃
Explanation:
The reaction that takes place is:
First we <u>determine the limiting reactant</u>:
- 0.35 mol N₂ would react completely with (3*0.35) 1.05 moles of H₂. There are not as many H₂ moles, so H₂ is the limiting reactant.
Then we <u>convert H₂ moles (the limiting reactant) to NH₃ moles</u>, keeping in mind the <em>stoichiometry of the reaction</em>:
- 0.90 mol H₂ *
= 0.6 moles NH₃
<h2><em>Solid. Because molecules densely packed it has a high resistance to flow thereby lower kinetic energy.
</em></h2>