Answer:
• The actual number of moles of each element in the smallest unit of the compound. •In water (H 2 O), ammonia (NH 3), methane (CH 4), and ionic compounds, the empirical and molecular
Explanation:
Molecules of glucose (blood sugar) contain 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms.
Hope this helped :)
<h3>
Answer:</h3>
18.9 g F₂
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Reading a Periodic Table
- Using Dimensional Analysis
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
3.00 × 10²³ molecules F₂
<u>Step 2: Identify Conversions</u>
Avogadro's Number
Molar Mass of F₂ (Diatomic) - 38.00 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
18.9306 g F₂ ≈ 18.9 g F₂
Answer:
yes it can λ =265 nm
Explanation:
Here we will use the relationship
E = h c/λ ∴ λ = E/ hc where
h= Plank's constant
c= Speed of light
λ = Wavelength = ?
Substituting
note need E in J ,
E = 4.7 eV x 1.602 x 10⁻¹⁹ J/eV = 7.5 x 10⁻¹⁹ J)
λ = 7.5 x 10 ⁻¹⁹ J / ( 6.626 x 10⁻³⁴ Js x 3 x 10^8) = 2.65 x 10⁻⁷ m = 2.65
= 2.65 x 10⁻⁷ m x 1 x 10⁹ nm/m = 265 nm
Answer:
978mmHg
Explanation:
The total pressure of a gas mixture is defined as the sum of the pressure of each gas in the mixture.
If the mixture of gases you have 200mmHg for O₂, 350mmHg for N₂ and 428mmHg for He, total pressure of the mixture is:
200mmHg + 350mmHg + 428mmHg = <em>978mmHg</em>