Answer:
The beat frequency is 30 Hz
Explanation:
Given;
velocity of the two sound waves, v = 343 m/s
wavelength of the first wave, λ₁ = 5.72 m
wavelength of the second wave, λ₂ = 11.44 m
The frequency of the first wave is calculated as follows;
F₁ = v/λ₁
F₁ = 343 / 5.72
F₁ = 59.97 HZ
The frequency of the second wave is calculated as follows;
F₂ = v/λ₂
F₂ = 343 / 11.44
F₂ = 29.98 Hz
The beat frequency is calculated as;
Fb = F₁ - F₂
Fb = 59.97 HZ - 29.98 Hz
Fb = 30 Hz
We know, the ideal gas equation,
P1V1 / T1 = P2V2 / T2
Here, P1 = 760 mm
V1 = 10 m3
T1 = 27 + 273 = 300 K
P2 = 400 mm Hg
T2 = -23 + 273 = 250 K
Substitute their values,
760*10 / 300 = 400 * V2 / 250
25.33 * 250 = 400 * V2
V2 = 6333.333/ 400
V2 = 15.83
In short, Your Answer would be approx. 15.83 m3
Hope this helps!
The law of conservation of momentum tells us that momentum
is conserved, therefore total initial momentum should be equal to total final
momentum. In this case, we can expressed this mathematically as:
mA vA + mB vB = m v
where, m is the mass in kg, v is the velocity in m/s
since m is the total mass, m = mA + mB, we can write the
equation as:
mA vA + mB vB = (mA + mB) v
furthermore, car B was at a stop signal therefore vB = 0,
hence
mA vA + 0 = (mA + mB) v
1800 (vA) = (1800 + 1500) (7.1 m/s)
<span>vA = 13.02 m/s</span>
Answer:
an energy source (AC or DC), a conductor (wire), an electrical load (device), and at least one controller (switch).
Explanation:
mark as brainliest please
Answer:
option D) -3m
Explanation:
if 6m is diplaced by -3m then it would be -3+6=3m
feel free to ask if you are confused