Answer:
79.2 m/s
Explanation:
θ = angle at which projectile is launched = 29.7 deg
a = initial speed of launch = 130 m/s
Consider the motion along the vertical direction
v₀ = initial velocity along the vertical direction = a Sinθ = 130 Sin29.7 = 64.4 m/s
y = vertical displacement = - 108 m
a = acceleration = - 9.8 m/s²
v = final speed as it strikes the ground
Using the kinematics equation
v² = v₀² + 2 a y
v² = 64.4² + 2 (-9.8) (-108)
v = 79.2 m/s
Answer:
0.000001 kg
Explanation:
because 1 kg equal 1,000,000 milligrams
we take
which equals 0.000001 kg
Volcanic eruption most likely to happen when the plates are moving intense in the ground. Maybe an earthquake are most likely for a volcanic eruption to occur.
Imagine a skinny straw in the water, standing right over the hole. The WEIGHT of the water in that straw is the force on the tape. Now, the volume of water in the straw is (1 mm^2) times (20 cm). Once you have the volume, you can use the density and gravity to find the weight. And THAT's the force on the tape. If the tape can't hold that force, then it peels off and the water runs out through the hole. /// This is a pretty hard problem, because it involved mm^2, cm, and m^3. You have to be very very very careful with your units as you work through this one. If you've been struggling with it, I'm almost sure the problem is the units.
Answer:
Explanation:
θ
X-direction | Y-direction
⇒
|