<span>Each of these systems has exactly one degree of freedom and hence only one natural frequency obtained by solving the differential equation describing the respective motions. For the case of the simple pendulum of length L the governing differential equation is d^2x/dt^2 = - gx/L with the natural frequency f = 1/(2π) √(g/L). For the mass-spring system the governing differential equation is m d^2x/dt^2 = - kx (k is the spring constant) with the natural frequency ω = √(k/m). Note that the normal modes are also called resonant modes; the Wikipedia article below solves the problem for a system of two masses and two springs to obtain two normal modes of oscillation.</span>
Momentum = mv
where m is the mass of an electron and v is the velocity of the electron.
v = momentum ÷ m
= (1.05×10∧-24)÷(9.1×10∧-31) = 1,153,846.154 m/s
kinetic energy = (mv∧2)÷2
= (9.1×10∧-31 × 1,153,846.154∧2) ÷2
= (1.21154×10∧-18) ÷ 2
= 6.05769×10∧-19 J
Answer:
Light passes through the gas
Light passes through the pure water
Light passes through some solids
Explanation:
In gasses, there are many spaces between the molecules. These spaces allow light to pass through them without any interruption.
In pure water, there are some spaces between particles. these particles allow some light rays to pass theough, some to move through the common boundary and reflec5 some of them.
in solids, some allow light to pass through as they are transparent or translucent
Answer:
The atmospheric pressure is
.
Explanation:
Given that,
Atmospheric pressure
drop height h'= 27.1 mm
Density of mercury 
We need to calculate the height
Using formula of pressure

Put the value into the formula



We need to calculate the new height




We need to calculate the atmospheric pressure
Using formula of atmospheric pressure

Put the value into the formula


Hence, The atmospheric pressure is
.
F=ma
a=F/m
=825N/75kg
=825kg*m/75kg*s^2
=11m/s^2 in the direction of the force (ans)