This set up of a conversion table should show you that if you multiply
the grams of BeI2 times .02 moles, it equals <span>5.256 g (your answer) </span>
mole is the standardized form of molarity
Answer: I dunno that but u should give me brainliest
Explanation:
Answer:
1= 2H₂ + O₂ → 2H₂O
2=CaCo₃ + heat → CaO +CO₂
3=CH₄ + 2O₂ → CO₂ +2H₂O
4=HCl + NaOH → NaCl + H₂O
Explanation:
1 = Simple composition
The formation of water molecule is simple composition reaction. In this reaction two hydrogen atoms react with one oxygen atom and form one water molecules.
2H₂ + O₂ → 2H₂O
The amount of energy released is -285.83 KJ/mol. It is exothermic reaction.
2 = Simple decomposition reaction:
The break down of sodium hydrogen carbonate into sodium carbonate, carbondioxide and water is decomposition reaction. The decomposition reactions re mostly endothermic, because compound required energy to break.
2NaHCO₃ + heat → Na₂CO₃ + H₂O + CO₂
It is endothermic reaction.
Another example is:
CaCo₃ + heat → CaO +CO₂
3 = Combustion reaction
Consider the combustion of methane:
CH₄ + 2O₂ → CO₂ +2H₂O
The burning of methane is exothermic. The combustion reactions are exothermic because when fuel are burns they gives energy.
4 = Neutralization reaction
The neutralization reactions are those in which acid and base react to form the salt and the water. Some neutralization reactions are exothermic because they release heat. e.g
Consider the neutralization reaction of HCl and NaOH.
HCl + NaOH → NaCl + H₂O
Answer:
I don't really get the options but it favoures the reactant side.
Explanation:
Increasing pressure favours the side with fewer moles of gas while decreasing pressure favours the side with the more moles of gas. E.g
If there is 0 moles of gas particles in the reactant side and 1 mole of gas particle in the product side, increasing pressure favours the reactants while decreasing pressure favours the product side.
With the explanations I have made, I hope the question is now clear to you.