C is the answer.
The temperature T<span> in degrees Celsius (°C) is equal to the temperature </span>T<span> in Kelvin (K) minus 273</span>°.
Answer:
The answer will be listed below.
Explanation:
Kinetic Energy- Energy of motion, increases with mass
Potential Energy- Stored energy, increases with height
Both- Increases with velocity
Answer: The correct option is (c). The total pressure doubles.
Solution:
Initially, only 4 moles of oxygen gas were present in the flask.
(
) ( according to Dalton's law of partial pressure)
....(1)
= Total pressure when only oxygen gas was present.
Final total pressure when 4 moles of helium gas were added:

partial pressure of oxygen in the mixture :
Since, the number of moles of oxygen remains the same, the partial pressure of oxygen will also remain the same in the mixture.

= Total pressure of the mixture.
from (1)

On rearranging, we get:

The new total pressure will be twice of initial total pressure.
Answer: 
Explanation:
According to the law of conservation of mass, mass can neither be created nor be destroyed. Thus the mass of products has to be equal to the mass of reactants. The number of atoms of each element has to be same on reactant and product side. Thus chemical equations are balanced.
Thus in the reactants, there are 2 atoms of hydrogen and 2 atoms of iodine .Thus there has to be 2 atoms of hydrogen and 2 atoms of iodine in the product as well. Thus a coefficient of 2 is placed in front of HI.
The balanced chemical reaction is:

Answer:
NaCl: ionic, HF: hydrogen bond, HCl: dipole dipole , F2: dispersion force
Explanation:
complete question is:
The four major attractive forces between particles are ionic bonds, dipole-dipole attractions, hydrogen bonds, and dispersion forces. Consider the compounds below, and classify each by its predominant attractive or intermolecular force among atoms or molecules of the same type.Identify each of the following ( NaCl, HF, HCl, F2) as Ionic, H Bonding, Dipole or Dispersion.