The extrapolated temperature is used to define the maximum temperature of the mixture relatively than the highest recorded temperature in which the conclusion will effect in a higher specific heat value. Heat is bound to escape from whatever apparatus is using, therefore it is needed to account for the loss of the heat that does not go into increasing the temperature of the mixture.
Answer:
a) v₁fin = 3.7059 m/s (→)
b) v₂fin = 1.0588 m/s (→)
Explanation:
a) Given
m₁ = 0.5 Kg
L = 70 cm = 0.7 m
v₁in = 0 m/s ⇒ Kin = 0 J
v₁fin = ?
h<em>in </em>= L = 0.7 m
h<em>fin </em>= 0 m ⇒ U<em>fin</em> = 0 J
The speed of the ball before the collision can be obtained as follows
Einitial = Efinal
⇒ Kin + Uin = Kfin + Ufin
⇒ 0 + m*g*h<em>in</em> = 0.5*m*v₁fin² + 0
⇒ v₁fin = √(2*g*h<em>in</em>) = √(2*(9.81 m/s²)*(0.70 m))
⇒ v₁fin = 3.7059 m/s (→)
b) Given
m₁ = 0.5 Kg
m₂ = 3.0 Kg
v₁ = 3.7059 m/s (→)
v₂ = 0 m/s
v₂fin = ?
The speed of the block just after the collision can be obtained using the equation
v₂fin = 2*m₁*v₁ / (m₁ + m₂)
⇒ v₂fin = (2*0.5 Kg*3.7059 m/s) / (0.5 Kg + 3.0 Kg)
⇒ v₂fin = 1.0588 m/s (→)
If my math is right its A) 7
because 189 divided by 27 is 7
Answer:
a) 51.8 cm³
b) kg/m³ is a dimension of density (mass/volume). The regular unitys for volume are m³, cm³, L, gallons.
Explanation:
a) The density of pure gold is 19.3 g/cm³. When put in water, the piece of gold will occupy a volume, so that the volume of water will be displaced. To know the volume, we must divide the mass for the density (mass must be in grams because of the units of the density)
V = 1000/19.3
V = 51.8 cm³