Answer:
options A and C
Explanation:
Since, the spheres are of same size and rotational speed of the sphere are not dependent on their masses. So, both the sphere will reach the bottom of the at the same time with the same speed. But their kinetic energies are different.
So, options A and C are correct.
Answer:
Explanation:
mass of object, m = 3 kg
spring constant, K = 750 n/m
compression, x = 8 cm = 0.08 m
angle of gun, θ = 30°
(a) As the ball is launched, it has some velocity due to the compression in the spring, so it has some kinetic energy.
(b) Let v be th evelocity of ball at the tim eof launch.
by using the conservation of energy
1/2 Kx² = 1/2 mv²
750 x 0.08 x 0.08 = 3 x v²
v = 1.265 m/s
By use of the formula of maximum height


h = 0.02 m
h = 2 cm
Emotional stimuli is the answer to your question.
Answer:
4th answer
Explanation:
The gradient of a distance-time graph gives the speed.
gradient = distance / time = speed
Here, the gradient is a constant till 30s. So it has travelled at a constant speed. It means it had not accelarated till 30s. and has stopped moving at 30s.
Answer:

Explanation:
Given:
- mass of water,

- initial temperature of water,

- initial temperature of pan,

- mass of pan,

- mass of water evapourated,

- specific heat of water,

- specific heat of aluminium pan,

- latent heat of vapourization,

<u>Using the equation of heat:</u>
<em>Here, initially certain mass of water is vapourised first and then the remaining mass of water comes in thermal equilibrium with the pan.</em>


