Answer:
0.0133A
Explanation:
Since we have two sections, for the Inductor region there would be a current
. In the case of resistance 2, it will cross a current
Defined this we proceed to obtain our equations,
For
,


For
,


The current in the entire battery is equivalent to,


Our values are,




Replacing in the current for t= 0.4m/s



<span>The Earth’s internal "((HEAT))" source provides the energy for our dynamic planet, providing it with the driving force for on-going disastrous events such as earthquakes and volcanic eruptions and for plate-tectonic motion. </span>
Answer:
120,000
Explanation:
Millimeters to meters calculation-
Multiply by 1,000.
120 x 1,000 = 120,000.
This is the correct answer and formula.
Hope this helps!
Answer:
54.6°
Explanation:
From law of reflection i=r.
So, construct the reflected ray at 55.7°degrees from the normal and let it fall on the other mirror.
Now draw the second normal at the point of incidence and again measure the angle of incidence, and draw the angle of reflection.
If you consider triangle AOB, one angle is ∠AOB=90°
and ∠OAB is 54.6°
From angle sum property third angle ie ∠ABO=180°-90°-54.6°=35.4°
So, the second incident angle will be 54.6°
Hence, the second reflected angle will be 54.6 degrees.
Answer:
Explanation:
If friction is neglected, the wheel cannot roll and can only slide frictionlessly and will have the same velocity at the bottom of the ramp as if it had been in free fall as it has converted the same amount of potential energy.
mgh = ½mv²
v = √(2gh) = √(2(9.81)(2.00)) = 6.26418... = 6.26 m/s
However if we do not ignore all friction and the wheel rolls without slipping down the slope, the potential energy becomes linear and rotational kinetic energy
mgh = ½mv² + ½Iω²
mgh = ½mv² + ½(½mR²)(v/R)²
2gh = v² + ½v²
2gh = 3v²/2
v = √(4gh/3) =√(4(9.81)(2.00)/3) = 5.11468... = 5.11 m/s