Answer:
They decrease trauma by allowing for a more gradual change in velocity
Explanation:
Answer:
Explanation:
The fish is initially at rest and it is also at rest when the spring is fully stretched at the maximum distance.
Change in gravity potential energy = change in spring potential energy
mgh = 1/2kh^2
Assume gravity constant g is 10m/s^2
2.6*10*h = 1/2*200*h^2
100h^2 - 26h = 0
2h(50h - 13) = 0
h = 0 or h = 13/50 = 0.65m
h = 0 is before the spring is stretched
So the maximum distance is 0.65m.
Recall this gas law:
= 
P₁ and P₂ are the initial and final pressures.
V₁ and V₂ are the initial and final volumes.
T₁ and T₂ are the initial and final temperatures.
Given values:
P₁ = 475kPa
V₁ = 4m³, V₂ = 6.5m³
T₁ = 290K, T₂ = 277K
Substitute the terms in the equation with the given values and solve for Pf:

<h3>P₂ = 279.2kPa</h3>
Answer:
The time taken by the projectile to hit the ground is 6.85 sec.
Explanation:
Given that,
Vertical height of cliff = 230 m
Distance = 300 m
Suppose, determine the time taken by the projectile to hit the ground.
We need to calculate the time
Using second equation of motion

Where, s = vertical height of cliff
u = initial vertical velocity
g = acceleration due to gravity
Put the value in the equation



Hence, The time taken by the projectile to hit the ground is 6.85 sec.
Answer:
130 km at 35.38 degrees north of east
Explanation:
Suppose the HQ is at the origin (x = 0, y = 0)
So the coordinates of the helicopter after the 1st flight is


After the 2nd flight its coordinate would be:


So in order to fly back to its HQ it must fly a distance and direction of
north of east