Answer:
period = 0.65 sec
Explanation:
from the question we are given the following
extension (x) = 2.6 cm = 0.026 m
mass of object (Mo) = 7 g = 0.007 kg
mass of block (Mb) = 28 g = 0.028 g
acceleration due to gravity (g) = 9.8 m/s^{2}
period = 2π x 
where k is the spring constant of the spring
and k = \frac{Mo x g}{x}
k = \frac{0.007 x 9.8}{0.026}
k = 2.64 N/m
now period = 2π x 
period = 0.65 sec
Answer:
0.33 hz
Explanation:
the formula for the frequency in this situation is f=v/wavelength
Answer:
The pitch will progressively lower
Explanation:
If i were bungee jumping from a bridge while blowing a hand-held air horn and someone who remains on the bridge will hear a decreased pitch or frequency as the source is moving away from the stationary listener as per the Dooplers effect. Hence, the pitch will progressively lower as the source is moving away from the observer.
Note: I'm not sure what do you mean by "weight 0.05 kg/L". I assume it means the mass per unit of length, so it should be "0.05 kg/m".
Solution:
The fundamental frequency in a standing wave is given by

where L is the length of the string, T the tension and m its mass. If we plug the data of the problem into the equation, we find

The wavelength of the standing wave is instead twice the length of the string:

So the speed of the wave is

And the time the pulse takes to reach the shop is the distance covered divided by the speed: