Answer:
82.59 m/s or 297.324 km/h
Explanation:
From the question,
Applying
V = √[2(P'/ρ)].................. Equation 1 ( From
Where V = Speed of the aircraft, Differential Pressure of the air craft, ρ = Density of air at an altitude of 3000 m.
Given: P' = 3100 N/m², ρ = 0.909 kg/m³
Substitute into equation 1
V = √[2(3100/0.909)]
V = √(2×3410.34)
V = √(6820.68)
V = 82.59 m/s
V = 297.324 km/h
Hence the speed of the aircraft is 82.59 m/s or 297.324 km/h
The combustion reaction of propane would be expressed as:
C3H8 + 5O2 = 3CO2 + 4H2O
To determine the mass of water that is produced from the given amount of propane, we use the mass of propane and the relation of the substances from the balanced reaction. We do as follows:
moles propane = 22 g C3H8 ( 1 mol / 44.1 g ) = 0.50 mol C3H8
moles H2O = 0.50 mol C3H8 ( 4 mol H2O / 1 mol C3H8) = 2 mol H2O
mass H2O = 2 mol H2O ( 18.02 g / 1 mol ) = 36.04 g H2O
Therefore, the mass of water that is produced from 22 grams of propane would be 36.04 g.
Answers:
(a) 1s² 2s²2p³; (b) 1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²; (c) 1s² 2s²2p⁶ 3s²3p⁵
Step-by-step explanation:
One way to solve this problem is to add electrons to the orbitals one-by-one until you have added the required amount.
Fill the subshells in the order listed in the diagram below. Remember that an s subshell can hold two electrons, while a p subshell can hold six, and a d subshell can hold ten.
(a) <em>Seven electrons
</em>
1s² 2s²2p³
There are two electrons in the 2s subshell and three in the 2p subshell. The remaining two electrons are in the inner 1s subshell.
(b) <em>22 electrons
</em>
1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²
There are two electrons in the 4s subshell and two in the 2p subshell. The remaining 18 electrons are in the inner subshells.
(c) <em>17 electrons</em>
1s² 2s²2p⁶ 3s²3p⁵
There are two electrons in the 3s subshell and five in the 2p subshell. The remaining 10 electrons are in the inner subshells.
3 subatomic particles in the nucleus
which is proton(24),neutron (28) and electrons(24)