Answer:
shark puppet yeah i be getting buckets
Explanation:
Answer:
bchfdfu
<em>hjoufu</em><em> </em><em>I'm</em><em> not</em><em> sure</em><em> if</em><em> you</em><em> are</em><em> still</em><em> interested</em><em> in</em><em> the</em><em> position</em><em> and</em><em> would</em><em> like</em><em> to</em><em> know</em><em> if</em><em> you</em><em> are</em><em> interested</em>
Answer:
<em>2 m/s</em>
<em></em>
Explanation:
The electromagnetic flow-metre work on the principle of electromagnetic induction. The induced voltage is given as

where
is the induced voltage = 2.88 mV = 2.88 x 10^-3 V
is the distance between the electrodes in this field which is equivalent to the diameter of the tube = 1.2 cm = 1.2 x 10^-2 m
is the velocity of the fluid through the field = ?
is the magnetic field = 0.120 T
substituting, we have
2.88 x 10^-3 = 0.120 x 1.2 x 10^-2 x 
2.88 x 10^-3 = 1.44 x 10^-3 x 
= 2.88/1.44 = <em>2 m/s</em>
Answer:

Explanation:
The electric flux through a certain surface is given by (for a uniform field):

where:
E is the magnitude of the electric field
A is the area of the surface
is the angle between the direction of the field and of the normal to the surface
In this problem, we have:
is the electric field
L = 2.0 m is the side of the sheet, so the area is

, since the electric field is perpendicular to the surface
Therefore, the electric flux is

Answer:
90°
Explanation:
The angle will be 90° when momentum for a system can be conserved in one direction while not being conserved in another.
The example can be
If we apply force on an object horizontally in west direction, then as in other direction south or north we cannot apply the principal of momentum conservation.