Answer:
The funda mental frequency of the original tube is 182Hz.
Explanation:
See the attachment for the calculation steps.
In order to calculate the fundamental frequency of the original closed tube we need to find the length of the tube which is equal to the sum of the lengths of the two new tubes.
For closed tubes
f = nv/4L (n = 1, 3, 5,...n)
f = nv/2L (n = 1, 2, 3,...n)
The details of calculation can be found below in the attachment.
Answer:
T
Explanation:
= Power of the bulb = 100 W
= distance from the bulb = 2.5 m
= Intensity of light at the location
Intensity of the light at the location is given as


= 1.28 W/m²
= maximum magnetic field
Intensity is given as


T
V=(40km/hr)(hr/3600s)(1000000mm/km)
v=11111.1mm/s
v=d/t
d=vt
d=(11111.1mm/s)(5s)
d=55555mm
d=5.56x10^4mm
Your answer would be motion because u need force to stop motion or anything at that matter
Answer:
1. -8.20 m/s²
2. 73.4 m
3. 19.4 m
Explanation:
1. Apply Newton's second law to the car in the y direction.
∑F = ma
N − mg = 0
N = mg
Apply Newton's second law to the car in the x direction.
∑F = ma
-F = ma
-Nμ = ma
-mgμ = ma
a = -gμ
Given μ = 0.837:
a = -(9.8 m/s²) (0.837)
a = -8.20 m/s²
2. Given:
v₀ = 34.7 m/s
v = 0 m/s
a = -8.20 m/s²
Find: Δx
v² = v₀² + 2aΔx
(0 m/s)² = (34.7 m/s)² + 2 (-8.20 m/s²) Δx
Δx = 73.4 m
3. Since your braking distance is the same as the car in front of you, the minimum safe following distance is the distance you travel during your reaction time.
d = v₀t
d = (34.7 m/s) (0.56 s)
d = 19.4 m