Answer:
i) Upwards delivery
ii) Downwards delivery
Explanation:
The methods used in the collection of gases are quite different depending on the state of the gas. The solubility and density of gases are the factors that determine the method of collection to be used.
Upwards delivery is used to collect gases that are soluble in water and lighter compared to air. Examples of these kind of gases include; Cl2 and SO2
Downwards delivery is used to collect gases that are soluble in water and denser than air. An example of this kind of gas is ammonia gas, NH4.
Answer : The correct option is (3) 500 K and 0.1 atm.
Explanation :
A real gas behaves ideally at high temperature and low pressure.
The ideal gas equation is,
where,
P = pressure of gas
V = Volume of gas
R = Gas constant
T = temperature of gas
n = number of moles of gas
The ideal gas works properly when the inter-molecular interactions between the gas molecules and volume of gas molecule will be negligible. This is possible when pressure is low and temperature is high.
Therefore, the correct option is (3) 500 K and 0.1 atm.
The volume of the unit cell is 2.67 x 10⁻²⁸ m³.
<h3>What is the volume of a unit cell of a body-centered cubic crystal?</h3>
In a body-centered cubic unit cell, the volume occupied by the particles of the substance is about 68% of the total unit cell.
Assuming that a single atomic a sphere, the volume is:
Volume(atom) = 4/3 x π x r³
Volume(atom) = 4/3 x π x (169 x 10⁻¹²)³
Volume(atom) = 2.02 x 10⁻²⁹ m³
There are a total of 9 atoms in a body-centered unit cell, so the total volume occupied by atoms is:
2.02 x 10⁻²⁹ x 9
= 1.82 x 10⁻²⁸ m³
Volume of cell = (1.15 x 10⁻²⁸ ) / 0.68
Volume of cell = 2.67 x 10⁻²⁸ m³
Therefore, the volume of the unit cell is 2.67 x 10⁻²⁸ m³.
Learn more volume of unit cells at: brainly.com/question/1594030
#SPJ1
Answer:
SO₂ + 0.5 O₂ + H₂O → H₂SO₄
3.83 g
Explanation:
In the formation of acid rain, sulfur dioxide reacts with oxygen and water in the air to form sulfuric acid. The balanced chemical equation is:
SO₂ + 0.5 O₂ + H₂O → H₂SO₄
The molar mass of SO₂ is 64.07 g/mol. The moles of SO₂ corresponding to 2.50 g are:
2.50 g × (1 mol/64.07 g) = 0.0390 mol
The molar ratio of SO₂ to H₂SO₄ is 1:1. The moles of H₂SO₄ formed are 0.0390 moles.
The molar mass of H₂SO₄ is 98.08 g/mol. The mass of H₂SO₄ is:
0.0390 mol × 98.08 g/mol = 3.83 g