When cooled by liquid nitrogen, the balloon shrinks (not as much as the air-filled balloon) and it sinks down on the table. When heating up, the balloon slowly rises and flies up in the air again. Explanation 1: The volume of the balloon decreases by the low temperature, because the gas inside is cooled down.
Answer:
14.77 mol.
Explanation:
- It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms.
<u><em>Using cross multiplication:</em></u>
1.0 mole of He contains → 6.022 x 10²³ atoms.
??? mole of He contains → 8.84 x 10²⁴ atoms.
<em>∴ The no. of moles of He contains (8.84 x 10²⁴ atoms) </em>= (1.0 mol)(8.84 x 10²⁴ atoms)/(6.022 x 10²³ atoms) =<em> 14.77 mol.</em>
The heat cause 300g water temperature increase from 20 to 26 celcius. The heat transferred would be: 300g * (26 °C -20 °C) *4.2 joule/gram °C= 7560J
The unknown substance is added to the water, so its final temperature should be the same as the water. The calculation would be:
7560J= 124g * (100-26)* specific heat
specific heat= 7560J / 124g / 74 °C= 0.8238 J/gram °C
Answer:
C
Explanation:
Characteristics used to classify stars include color, temperature, size, composition, and brightness.
Answer:
balanced equation mole ratio 5 2 mol NO/1 mol O2
10.00 g O2 3 1 mol O2/32.00 g O2 5 0.3125 mol O2
20.00 g NO 3 1 mol NO/30.01 g NO 5 0.6664 mol NO
actual mole ratio 5 0.6664 mol NO/0.3125 mol O2 5 2.132 mol NO/1.000 mol O2
Because the actual mole ratio of NO:O2 is larger than the balanced equation mole
ratio of NO:O2, there is an excess of NO; O2 is the limiting reactant.
Mass of NO used 5 0.3125 mol O2 3 2 mol NO/1 mol O2 5 0.6250 mol NO
0.6250 mol NO 3 30.01 g NO/1 mol NO 5 18.76 g NO
Mass of NO2 produced 5 0.6250 mol NO2 3 46.01 g NO2/1 mol NO2 5 28.76 g NO2
Excess NO 5 20.00 g NO 2 18.76 g NO 5 1.24 g N
Explanation: