Answer:
The driving force for (a) heat transfer is temperature difference. (b) electric current is voltage difference. (c) fluid flow is pressure or hydraulic head difference.
Explanation: (a) The driving force for heat transfer is temperature difference. Heat transfer between two mediums is possible only if the two mediums are at different temperature, the higher the temperature, the higher the heat transfer.
(b) The driving force for electric current is voltage difference. Voltage difference is defined as the potential difference in charge between two points in electrical field. For electric current to occur,the voltage must be high.
(c) The driving force for fluid flow is pressure difference or hydraulic head difference. For fluid to move upward,it requires energy.
Explanation:
It is given that,
Diameter of loop, d = 1.4 cm
Radius of loop, r = 0.7 cm = 0.007 m
Magnetic field, 
(A) Magnetic field of a current loop is given by :

I is the current in the loop


I = 27.85 A
(B) Magnetic field at a distance r from a wire is given by :



r = 0.00222 m

Hence, this is the required solution.
The average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
From the question, we are to determine the average force on the ball by the racket.
From the formula,

Where F is the force
m is the mass
v is the velocity
and t is the time
From the given information
m = 0.07 kg
v = 56 m/s
t = 0.04 s
Putting the parameters into the formula,
we get


F = 98 N
Hence, the average force on the ball by the racket is 98 N. The correct option is the third option - 98 N
Learn more on calculating force exerted on an object here: brainly.com/question/13590154
Answer:

Explanation:
Given that,
The instantaneous current in the circuit is giveen by :

We need to find the rms value of the current.
The general equation of current is given by :

It means, 
We know that,

So, the rms value of current is 2.12 A.