Answer:
Explanation:
The amount of force needed needs to be greater than all the forces acting in the opposite direction that the bowling ball was thrown. This includes air resistance, floor friction, gravity, and any other force involved. As long as the force acting on the bowling ball that is causing it to go in the direction of the pins is slightly greater than the opposite acting forces then it will continue in that direction. Since no values are provided we cannot calculate the actual precise value of force needed.
The Moment of Inertia of the Disc is represented by
. (Correct answer: A)
Let suppose that the Disk is a Rigid Body whose mass is uniformly distributed. The Moment of Inertia of the element is equal to the Moment of Inertia of the entire Disk minus the Moment of Inertia of the Hole, that is to say:
(1)
Where:
- Moment of inertia of the Disk.
- Moment of inertia of the Hole.
Then, this formula is expanded as follows:
(1b)
Dimensionally speaking, Mass is directly proportional to the square of the Radius, then we derive the following expression for the Mass removed by the Hole (
):


And the resulting equation is:



The moment of inertia of the Disc is represented by
. (Correct answer: A)
Please see this question related to Moments of Inertia: brainly.com/question/15246709
Answer:
W = 9.93 10² N
Explanation:
To solve this exercise we must use the concept of density
ρ = m / V
the tabulated density of copper is rho = 8966 kg / m³
let's find the volume of the cylindrical tube
V = A L
V = π (R_ext ² - R_int ²) L
let's calculate
V = π (4² - 2²) 10⁻⁴ 3
V = 1.13 10⁻² m³
m = ρ V
m = 8966 1.13 10⁻²
m = 1.01 10² kg
the weight of the tube
W = mg
W = 1.01 10² 9.8
W = 9.93 10² N
The final volume of the gas is 238.9 mL
Explanation:
We can solve this problem by using Charle's law, which states that for a gas kept at constant pressure, the volume of the gas (V) is proportional to its absolute temperature (T):

Which can be also re-written as

where
are the initial and final volumes of the gas
are the initial and final temperature of the gas
For the gas in the balloon in this problem, we have:
is the initial volume
is the initial absolute temperature
is the final volume
is the final temperature
Solving for
,

Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Answer:
1977.696 J
Explanation:
Given;
Weight of the box = 28.0 kg
Force applied by the boy = 230 N
angle between the horizontal and the force = 35°
Therefore,
the horizontal component of the force = 230 × cosθ
= 230 × cos 35°
= 188.405 N
Coefficient of kinetic friction, μ = 0.24
Force by friction, f = μN
here,
N = Normal force = Mass × acceleration due to gravity
or
N = 28 × 9.81 = 274.68 N
therefore,
f = 0.24 × 274.68
or
f = 65.9232 N
Now,
work done by the boy, W₁ = 188.405 N × Displacement
= 188.405 N × 30
= 5652.15 J
and,
the
work done by the friction, W₂ = - 65.9232 N × Displacement
= - 65.9232 N × 30 m
= - 1977.696 J
[ since the friction force acts opposite to the direction of motion, therefore the workdone will be negative]