To solve this problem we will apply the concepts related to the conservation of momentum. By definition we know that the initial moment must be equivalent to the final moment of the two objects therefore


Here,
Mass of each object
Initial velocity of each object
= Final velocity of each object
Since the initial velocity relative to the metal tank is at rest, that velocity will be zero. And considering that in the end, the speed of the two bodies is the same, the equation would become

Rearranging to find the velocity,

Replacing we have that,


Therefore the velocity of the shark immediately after it swallows the tank is 
Answer:
It regulates the movement of proteins and RNAs into and out of the nucleus
Explanation:
The nuclear pore complex are protein channels connecting the outer membrane of the nucleus to the inner membrane of the nucleus. They securely regulates the almost all of the transport of protein and RNAs into and out of the nucleus.
Answer:
???????,???????????????????????????????
Answer:
1.75 atm
Explanation:
Mass is conserved, so the mass flow before the constriction equals the mass flow after the constriction.
m₁ = m₂
ρQ₁ = ρQ₂
Q₁ = Q₂
v₁A₁ = v₂A₂
v₁ πd₁²/4 = v₂ πd₂²/4
v₁ d₁² = v₂ d₂²
Now use Bernoulli equation:
P₁ + ½ ρ v₁² + ρgh₁ = P₂ + ½ ρ v₂² + ρgh₂
Since h₁ = h₂:
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₂²
Writing v₂ in terms of v₁:
P₁ + ½ ρ v₁² = P₂ + ½ ρ (v₁ d₁²/d₂²)²
P₁ + ½ ρ v₁² = P₂ + ½ ρ v₁² (d₁/d₂)⁴
P₁ + ½ ρ v₁² (1 − (d₁/d₂)⁴) = P₂
Plugging in values:
P₂ = 2 atm + ½ (1000 kg/m³) (4.4 m/s)² (1 − (3.3 cm / 2.4 cm)⁴) (1 atm / 1.013×10⁵ Pa)
P₂ = 1.75 atm
Answer:
v_avg = 2.9 cm/s
Explanation:
The average velocity of the object is the sum of the distance of all its trajectories divided the time:
x_all is the total distance traveled by the object. In this case you have that the object traveled in the first trajectory 165cm-15cm = 150cm, and in the second one, 165cm - 25cm = 140cm
Then, x_all = 150cm + 140cm = 290cm
The average velocity is, for t = 100s
hence, the average velocity of the object in the total trajectory traveled is 2.9 cm/s