Hello!
To find the number of atoms in 2.822 moles of nickel, we need to multiply it by Avogadro's number. Avogadro's number is 6.02 x 10^23 atoms.
2.822 moles x (6.02 x 10^23) ≈ 1.698844 x 10^24
Therefore, there are about 1.70 x 10^24 atoms (according to the number of significant figures) in 2.822 moles of nickel.
Answer:
0.20 mol
Explanation:
Let's consider the reduction of iron from an aqueous solution of iron (II).
Fe²⁺ + 2 e⁻ ⇒ Fe
The molar mass of Fe is 55.85 g/mol. The moles corresponding to 5.6 g of Fe are:
5.6 g × 1 mol/55.85 g = 0.10 mol
2 moles of electrons are required to deposit 1 mole of Fe. The moles of electrons required to deposit 0.10 moles of Fe are
0.10 mol Fe × 2 mol e⁻/1 mol Fe = 0.20 mol e⁻
Answer: Ions are formed by the addition of electrons to, or the removal of electrons from, neutral atoms or molecules or other ions; by combination of ions with other particles; or by rupture of a covalent bond between two atoms in such a way that both of the electrons of the bond are left in association with one of the ...
Answer: 1.414x10^24 molecules in 94.4g MgO
Explanation: molar mass MgO 40.204
molecules in 40.204 g MgO = avogadro number
molecules in 94.4 g MgO = (94.4/40.204)*avogadro number
(94.4/40.204)*6.02214076*10^23 = 14.14x10^23