Answer:
1: At temperatures below 542.55 K
2: At temperatures above 660 K
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the Gibbs free energy, it is possible to write the following expression:

Whereas ΔG=0 for the spontaneous transition. In such a way, we proceed as follows:
1:

It means that at temperatures lower than 542.55 K the reaction will be spontaneous.
2:

It means that at temperatures higher than 660 K the reaction will be spontaneous.
Best regards!
<span>This would be the atomic mass. In an atom of carbon-12, there are 6 protons and 6 neutrons at rest (electrons have a negligible mass and are usually not part of the overall mass calculation). All atomic masses are based off the measurements of this specific iteration of carbon.</span>
Answer: C. CO₂ and H₂O
Explanation:
Combustion reactions produce carbon dioxide and water.
Answer : The molecular formula of the compound will be, 
Explanation :
Empirical formula : It is the simplest form of the chemical formula which depicts the whole number of atoms of each element present in the compound.
Molecular formula : it is the chemical formula which depicts the actual number of atoms of each element present in the compound.
For determining the molecular formula, we need to determine the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is :

As we are given that the empirical formula of a compound is
and the molar mass of compound is, 90.09 gram/mol.
The empirical mass of
= 1(12) + 2(1) + 1(16) = 30 g/eq


Molecular formula = 
Thus, the molecular formula of the compound will be, 
The correct answer is Lo.
The gravitational force between the two components is directly equivalent to the product of their masses and is inversely proportional to the distance separated between them. The largest planet in the solar system is Jupiter. It comprises 75 moons, and out of these moons, the four Galilean moons are very big in mass. These are Lo, Europa, Ganymede, and Callisto.
Of these Galilean moons, the Lo moon is very close to Jupiter. The Ganymede moon is the largest of all the Galilean moons, but it is situated very far from Jupiter in comparison to Lo. Thus, the force of attraction between the Lo and Jupiter is very high, it exhibits the greatest gravitational force with Jupiter.