setup 1 : to the right
setup 2 : equilibrium
setup 3 : to the left
<h3>Further explanation</h3>
The reaction quotient (Q) : determine a reaction has reached equilibrium
For reaction :
aA+bB⇔cC+dD
![\tt Q=\dfrac{C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Comparing Q with K( the equilibrium constant) :
K is the product of ions in an equilibrium saturated state
Q is the product of the ion ions from the reacting substance
Q <K = solution has not occurred precipitation, the ratio of the products to reactants is less than the ratio at equilibrium. The reaction moved to the right (products)
Q = Ksp = saturated solution, exactly the precipitate will occur, the system at equilibrium
Q> K = sediment solution, the ratio of the products to reactants is greater than the ratio at equilibrium. The reaction moved to the left (reactants)
Keq = 6.16 x 10⁻³
Q for reaction N₂O₄(0) ⇒ 2NO₂(g)
![\tt Q=\dfrac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Ctt%20Q%3D%5Cdfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)
Setup 1 :

Q<K⇒The reaction moved to the right (products)
Setup 2 :

Q=K⇒the system at equilibrium
Setup 3 :

Q>K⇒The reaction moved to the left (reactants)
Answer:
fgufyifyifyiyduhyufyiddjyfjyf86yif
Answer:
E = 12.92 × 10^(-16) J
Explanation:
Formula for energy is;
E = hc/λ
Where;
h is Planck's constant = 6.63 x 10^(-34) J.s
c is speed of light = 3 × 10^(8) m/s
λ is wavelength = 0.154 nm = 0.154 × 10^(-9) m
E = (6.63 x 10^(-34) × 3 × 10^(8))/(0.154 × 10^(-9))
E = 12.92 × 10^(-16) J
<span>Too much B. potassium can
slow and eventually stop the heart, and supplements should be taken only
under the care of a physician.
</span>
Answer:
Option c → 8:1
Explanation:
This is the reaction:
C₅H₁₂ + 8O₂ → 10CO₂ + 6H₂O
1 mol of pentane needs 8 moles of oxygen to be combusted and this combustion produces 10 mol of carbon dioxide and 6 moles of water.
To determine the ratio, look the stoichiometry.
For every 8 moles of oxygen, I need 1 mole of pentane gas.