<span>R= 8.314 J/mol K
T= 273 + 102 = 375K</span><span>
= (3/2) x 8.314 x 375 = 4680 J/mol</span>
Answer:
O Charles's law
.
Explanation:
Hello!
In this case, since the use of gas laws leads to a good comprehension of how gases behave towards volume, pressure and temperature, we can review that the Boyle's law explains the pressure-volume variation, the Dalton's law the partial pressure effect, the Gay-Lussac's law that of pressure and temperature and the Charles' that of temperature and volume at constant pressure; thus, the answer for the asked question is:
O Charles's law
Best regards!
Explanation:
To solve this question, we will use the Clayperon Equation:
P.V = n.R.T
where:
P = 101.28 kPa
1 atm = 101,325 Pa
x atm = 101,280 Pa
x = 1 atm
V = 37.058 L
n = we don't know
R = 0.082 atm.L/K.mol
T = -139.88 ºC = -139.88+273.15 = 133.27 K
1*37.058 = n*0.082*133.27
n = 0.29 moles
Answer: 0.29 moles