The solubility KI is 50 g in 100 g of H₂O at 20 °C. if 110 grams of ki are added to 200 grams of H₂O <u>the </u><u>solution </u><u>will be </u><u>saturated</u><u>.</u>
<h3>What is solubility?</h3>
Solubility is a condition where the solute is fully dissolved in the solvent. When fully mixed with the solvent.
Given that 50 g of KI is added to 100 g of water at 20 °C it means 100 g of water can dissolve a maximum of 50 g of KCl.
1 g of water will dissolve an quantity of 0.5 g of KCl.
To assay for 200 g of water: 200 g of water can disintegrate a maximum of (0.5) x 200 g of KCl.
The maximum amount of KCl that will dissolve is 100 g
Actualised amount dissolved = 110 g
when Amount dissolved > Maximum solubility limit
110 g > 100 g
Thus, the solution is saturated.
To learn more about solubility, refer to the below link:
brainly.com/question/8591226
#SPJ4
Answer:
No Sodium(Na) in methylene
Explanation:
Methylene is an organic compound
A chemical property of isopropanol : D. Isopropanol is flammable.
<h3>Further explanation
</h3>
There are changes that occur in the mater: physical changes and chemical changes
Classification uses the principle of the initial and final state of the substance.
Physical changes do not form new substances, so the properties of the particles remain the same.(size,volume,shape)
Example : boiling and freezing, just change its phase form from liquid to gas or from liquid to solid
Chemical changes/reaction form new substances(products) that are different from the initial substances(reactants)
Example : toxic, corroded
So :
-
the physical properties of isopropanol :
<em>mass, density, evaporation</em>
- the chemical properties of isopropanol :
<em>highly flammable</em>
Answer:
In a volumetric flask of marking 500.0 mL add 138.75 grams of calcium chloride and add small amount of water to dissolve solute completely. After the solute gets completely soluble add more water up till the mark of 500 ml.
Explanation:
Concentration of calcium chloride = 2.5 M
Volume of the solution = 500.0 ml = 0.5000 L
Moles of calcium chloride = n
n = moles of solute
c = concentration of solution
V = volume of the solution in L
Mass of calcium chloride = 111 g/mol × 1.2500 mol = 138.75 g
In a volumetric flask of marking 500.0 mL add 138.75 grams of calcium chloride and add small amount of water to dissolve solute completely. After the the solute gets completely soluble add more water up till the mark of 500 ml.
Answer:
(D) Na₂SO₄•10H₂O (M = 286).
Explanation:
- The depression in freezing point of water by adding a solute is determined using the relation:
<em>ΔTf = i.Kf.m,</em>
Where, ΔTf is the depression in freezing point of water.
i is van't Hoff factor.
Kf is the molal depression constant.
m is the molality of the solute.
- Since, Kf and m is constant for all the mentioned salts. So, the depression in freezing point depends strongly on the van't Hoff factor (i).
- van't Hoff factor is the ratio between the actual concentration of particles produced when the substance is dissolved and the concentration of a substance as calculated from its mass.
(A) CuSO₄•5H₂O:
CuSO₄ is dissociated to Cu⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
B) NiSO₄•6H₂O:
NiSO₄ is dissociated to Ni⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
(C) MgSO₄•7H₂O:
MgSO₄ is dissociated to Mg⁺² and SO₄²⁻.
So, i = dissociated ions/no. of particles = 2/1 = 2.
(D) Na₂SO₄•10H₂O:
Na₂SO₄ is dissociated to 2 Na⁺ and SO₄²⁻.
So, i = dissociated ions/no. of particles = 3/1 = 3.
∴ The salt with the high (i) value is Na₂SO₄•10H₂O.
So, the highest ΔTf resulted by adding Na₂SO₄•10H₂O salt.