Answer:
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Explanation:
A 32 carbon fatty acid which undergoes complete beta-oxidation assuming that the fatty acid is fully saturated will pass through the beta-oxidation cycle 14 times to produce the following:
15 molecules of acetylCoA, 14 molecules of FADH₂, and 14 molecules of NADH.
Each of the 15 acetylCoA molecules can be further oxidized in the citric acid cycle to yield the following: 15 × 3 NADH; 15 × 1 FADH₂, and 15 ATP molecules from the substrate level phosphorylation occuring at the succinylCoA synthetase catalyzed-reaction.
Total FADH₂ produced = 15 + 14 = 29 molecules of FADH₂
Total NADH produced = 45 + 14 = 59 molecules of NADH
The FADH₂ and NADH will each donate a pair of electrons to the electron transfer flavoprotein and mitochondrial NADH dehydrogenase respectively of the electron transport chain, and about 1.5 and 2.5 molecules of ATP are generated respectively when these electrons are transfered to molecular oxygen.
Thus, number of molecules of ATP generated by 29 molecules of FADH₂ = 1.5 × 29 = 43.5 molecules of ATP.
Number of molecules of ATP generated by 59 molecules of NADH = 2.5 × 59 = 147.5
Sum of ATP generated from FADH₂ and NADH = 43.5 + 147.5 = 191 ATP molecules
Total number of ATP molecules generated = 191 + 15 = 206 ATP molecules
Total number of ATP molecules generated from a 32-carbon fatty acid = 206 ATP molecules
Answer:
If an object is moving at a constant speed in a constant rightward direction, then the acceleration is zero and the net force must be zero.
The atoms and molecules in gases<span> are much more spread out than in solids or</span>liquids<span>. They vibrate and move freely at high speeds. A </span>gas<span> will fill any container, but if the container is not sealed, the </span>gas<span> will escape. </span>Gas<span> can be compressed much more easily than a </span>liquid<span> or solid</span>
Answer:
a. 2,9x10⁻⁴ M HCl
Explanation:
A solution is considered acidic when its concentration of H⁺ is higher than 1x10⁻⁷. The higher concentration of H⁺ will be the most acidic solution.
a. 2,9x10⁻⁴ M HCl. In water, this solution dissolves as H⁺ and Cl⁻. That means concentration of H⁺ is 2,9x10⁻⁴ M.
b. 4,5x10⁻⁵M HNO₃. In the same way, concentration of H⁺ is 4,5x10⁻⁵M.
c. 1,0x10⁻⁷M NaCl. As this solution doesn't produce H⁺, the solution is not acidic
d. 1,5x10⁻²M KOH. This solution produce OH⁻. That means the solution is basic nor acidic.
Thus, the solution considered the most acidic is a. 2,9x10⁻⁴ M HCl, because has the higher concentration of H⁺.
I hope it helps!
Impurities of brine solution
- calcium chloride
- calcium sulphate
- magnesium chloride
- sodium sulphate
Characteristics of halides of beryllium
- covalent bond
- does not conduct electricity
- In organic solvents, it is soluble.