Answer:
1.5 times
Explanation:
= depth of the diver initially = 5 m
= density of seawater = 1030 kg m⁻³
= Initial pressure at the depth
= final pressure after rising = 101325 Pa
Initial pressure at the depth is given as

= Initial volume at the depth
= Final volume after rising
Since the temperature remains constant, we have

Your answer would be the; <u>NET</u> force on the object. Refer to Newton's Laws of Forces and Motion.
Hope that helps!!!!!!!!!!!!!!!! : )
The hot gases produce their own characteristic pattern of spectral lines, which remain fixed as the temperature increases moderately.
<h3><u>Explanation: </u></h3>
A continuous light spectrum emitted by excited atoms of a hot gas with dark spaces in between due to scattered light of specific wavelengths is termed as an atomic spectrum. A hot gas has excited electrons and produces an emission spectrum; the scattered light forming dark bands are called spectral lines.
Fraunhofer closely observed sunlight by expanding the spectrum and a huge number of dark spectral lines were seen. "Robert Bunsen and Gustav Kirchhoff" discovered that when certain chemicals were burnt using a Bunsen burner, atomic spectra with spectral lines were seen. Atomic spectral pattern is thus a unique characteristic of any gas and can be used to independently identify presence of elements.
The spectrum change does not depend greatly on increasing temperatures and hence no significant change is observed in the emitted spectrum with moderate increase in temperature.
Well I think B hope this helps