Answer:
The wavelength of the wave is 20 m.
Explanation:
Given that,
Amplitude = 10 cm
Radial frequency 
Bulk modulus = 40 MPa
Density = 1000 kg/m³
We need to calculate the velocity of the wave in the medium
Using formula of velocity

Put the value into the formula


We need to calculate the wavelength
Using formula of wavelength


Put the value into the formula


Hence, The wavelength of the wave is 20 m.
You have to get points to asked a question and then you can help people to get points and it you want to have friends send them inventions but it you don't have no points you can't asked quenstions
<h2><em>C. translational motion</em></h2><h2><em>HOPE IT HELPS !!!!!</em></h2>
The vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
The given parameters;
- initial horizontal velocity, vₓ = 16 m/s
- initial vertical velocity,

- time interval 1 seconds
The components of the velocity can be horizontal or vertical velocity.
The vertical component of the velocity is affected by acceleration due to gravity while the horizontal component of the velocity is not affected by gravity.
The vertical component of the velocity is calculated as;

The horizontal component of the velocity is constant since it is not affected by gravity.
The horizontal component of the velocity = 16 m/s
Thus, the vertical component of the velocity after the given time is -9.8 m/s while the horizontal component of the velocity is 16 m/s.
Learn more here:brainly.com/question/20349275
Answer:
835.29 Hz
Explanation:
When moving towards the source of sound, frequency will be given by
f*=f(vd+v)/v
Where f is the freqiency of the source, vd is the driving speed, v is the speed of sound in air, f* is the inkown frequency when moving forward.
Substituting 800 Hz for f, 340 m/s for v and 15 m/s for vd then
f*=800(15+340)/340=835.29411764704 Hz
Rounded off, the frequency is approximately 835.29 Hz