Answer:
Law 1. A body continues in its state of rest, or in uniform motion in a straight line, unless acted upon by a force.
Law 2. A body acted upon by a force moves in such a manner that the time rate of change of momentum equals the force.
Law 3. If two bodies exert forces on each other, these forces are equal in magnitude and opposite in direction.
I got you b, V(final)^2=V(initial+2acceleration*displacement
So this turns to (0m/s)^2=(50m/s)^2+2(9.8)(d) so just flip it all around to isolate d so you get
-(50m/s)^2/2(9.8) = d so you get roughly 12.7555 meters up
Answer: 0.25 m/s
Explanation: Speed = wavelengt · frequency
v = λf and frequency is 1/period f = 1/T
Then v = λ/T = 5 m / 20 s = 0.25 m/s
Answer:
speed = 7.9 m/s
Explanation:
speed = total distance / time taken
speed = 300 / 38
speed = 7.89473684 m/s
to the nearest tenth
speed = 7.9 m/s
Answer:
50 N
4.2 N
Explanation:
i) The force needed to balance the boom is 2400 N. If the weight of the counterbalance is 2350 N, then the downward force the park attendant must apply is 50 N.
ii) When the boom is resting on the end support, the normal force is:
∑τ = Iα
-W (0.50) + F (3.0) − N (6.0) = 0
-0.50 W + 3.0 F = 6.0 N
N = (-0.50 W + 3.0 F) / 6.0
N = (-0.50 × 2350 + 3.0 × 400) / 6.0
N ≈ 4.2