Answer:
Thermal energy of an isolated system changes with time If the mechanical energy of that system is constant according to the first law of thermodynamics, which states that thermal energy of an isolated system can still change as long as the total energy of that system does not change.
Explanation:
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s
You're walking in one direction, and then the exact opposite of that direction, so you simply have to subtract the two distances.
200-150=50
You're 50 meters west of where you originally started.
You're west because 200 meters west is greater than 150 meters east. If the distance walked east was greater than the distance walked west, you would've been east of your starting position.
Helium has an atomic mass of 4.00 atomic mass units.
B)
The speed of the cart changed because it stopped.
Hope I could help!
-Marshy