Answer:
Molarity of the sodium hydroxide solution is 1.443 M/L
Explanation:
Given;
0.60 M concentration of NaOH contains 2.0 L
3.0 M concentration of NaOH contains 495 mL
Molarity is given as concentration of the solute per liters of the solvent.
If the volumes of the two solutions are additive, then;
the total volume of NaOH = 2 L + 0.495 L = 2.495 L
the total concentration of NaOH = 0.6 M + 3.0 M = 3.6 M
Molarity of NaOH solution = 3.6 / 2.495
Molarity of NaOH solution = 1.443 M/L
Therefore, molarity of the sodium hydroxide solution is 1.443 M/L
Answer:
76.03 °C.
Explanation:
Equation:
C2H5OH(l) --> C2H5OH(g)
ΔHvaporization = ΔH(products) - ΔH (reactants)
= (-235.1 kJ/mol) - (-277.7 kK/mol)
= 42.6 kJ/mol.
ΔSvaporization = ΔS(products) - ΔS(reactants)
= 282.6 J/K.mol - 160.6 J/K.mol
= 122 J/K.mol
= 0.122 kJ/K.mol
Using gibbs free energy equation,
ΔG = ΔH - TΔS
ΔG = 0,
T = ΔH/ΔS
T = 42.6/0.122
= 349.18 K.
Coverting Kelvin to °C,
= 349.18 - 273.15
= 76.03 °C.
<span>A </span>chemical formula<span> is a way of expressing information about the proportions of </span>atoms<span> that constitute a particular</span>chemical compound<span>, using a single line of </span>chemical element<span> symbols, numbers, and sometimes also other symbols, such as parentheses, dashes, brackets, commas and </span>plus<span> (+) and </span>minus<span> (−) signs. A chemical formula is not a </span>chemical name showing how the atoms are arranged.
Explanation:
It is known that one mole of chromium or molar mass of chromium is 51.99 g/mol.
It is given that number of moles is 11.9 moles.
Therefore, calculate the mass of chromium in grams as follows.
No. of moles = 
mass in grams = No. of moles × Molar mass
= 11.9 moles × 51.99 g/mol
= 618.68 g
Thus, we can conclude that there are 618.68 g in 11.9 moles of chromium.