Answer:
See explanation below
Explanation:
In this case, we are having a reaction between an anion and alkyl halide. The carbon 1 of the anion will act as nucleophile and will attack the electrophile, which is 5 carbon chain with the bromine in the third carbon.
Now, the nucleophyle is an alkyne of 3 carbon. According to the description, it should be:
CH₃ - C ≡ C⁻
And the alkyl halide is:
CH₃ - CH₂ CH(Br) - CH₂ - CH₃
And the final product after the reaction would be the following:
CH₃ - C ≡ C - CH - (CH₂CH₃)₂
However, in the attached picture you can see this better and the mechanism of reaction.
Hope this helps
#6 should be the independent variable because that's the one you can control
When the reaction equation is:
CaSO3(s) → CaO(s) + SO2(g)
we can see that the molar ratio between CaSO3 & SO2 is 1:1 so, we need to find first the moles SO2.
to get the moles of SO2 we are going to use the ideal gas equation:
PV = nRT
when P is the pressure = 1.1 atm
and V is the volume = 14.5 L
n is the moles' number (which we need to calculate)
R ideal gas constant = 0.0821
and T is the temperature in Kelvin = 12.5 + 273 = 285.5 K
so, by substitution:
1.1 * 14.5 L = n * 0.0821 * 285.5
∴ n = 1.1 * 14.5 / (0.0821*285.5)
= 0.68 moles SO2
∴ moles CaSO3 = 0.68 moles
so we can easily get the mass of CaSO3:
when mass = moles * molar mass
and we know that the molar mass of CaSO3= 40 + 32 + 16 * 3 = 120 g/mol
∴ mass = 0.68 moles* 120 g/mol = 81.6 g
Octet means presence of a total of 8 electrons in its valence shell while in case of duplet only 2 electrons are present in valence shell.
"cg" is centigram, which is one-hundredth of a gram.
I will first convert from g to cg (multiply by 100), then from mL to L (multiply by 1000).
